Normalized defining polynomial
\( x^{18} - 6 x^{17} + 427 x^{16} - 108 x^{15} + 75140 x^{14} + 192596 x^{13} + 7791772 x^{12} + 41131796 x^{11} + 324233435 x^{10} + 3688040186 x^{9} + 7170164721 x^{8} + 86405002144 x^{7} + 487968322552 x^{6} - 1781407473888 x^{5} + 19811453012448 x^{4} - 93030379477632 x^{3} + 300717932225024 x^{2} - 470177345986688 x + 723973068517952 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1188137836995213093753756971476827984600856939986944=-\,2^{33}\cdot 7^{15}\cdot 79^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $687.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{12} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{7}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} + \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{3}{16} a^{8} + \frac{3}{16} a^{7} - \frac{1}{16} a^{6} - \frac{11}{32} a^{5} + \frac{15}{32} a^{4} - \frac{1}{4} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{992} a^{14} + \frac{1}{496} a^{13} - \frac{19}{992} a^{12} - \frac{7}{248} a^{11} - \frac{1}{248} a^{10} - \frac{1}{62} a^{9} + \frac{9}{62} a^{8} - \frac{27}{124} a^{7} + \frac{207}{992} a^{6} - \frac{49}{496} a^{5} + \frac{27}{992} a^{4} - \frac{95}{248} a^{3} + \frac{85}{248} a^{2} - \frac{19}{62} a + \frac{1}{4}$, $\frac{1}{1984} a^{15} - \frac{23}{1984} a^{13} - \frac{13}{496} a^{12} + \frac{13}{496} a^{11} + \frac{15}{124} a^{10} + \frac{11}{124} a^{9} - \frac{4}{31} a^{8} - \frac{105}{1984} a^{7} - \frac{1}{124} a^{6} + \frac{223}{1984} a^{5} + \frac{3}{16} a^{4} + \frac{89}{496} a^{3} - \frac{23}{62} a^{2} + \frac{107}{248} a$, $\frac{1}{21824} a^{16} + \frac{3}{21824} a^{15} - \frac{9}{21824} a^{14} - \frac{3}{704} a^{13} - \frac{123}{10912} a^{12} + \frac{63}{5456} a^{11} - \frac{87}{1364} a^{10} - \frac{335}{2728} a^{9} - \frac{3073}{21824} a^{8} + \frac{4333}{21824} a^{7} - \frac{149}{1984} a^{6} + \frac{263}{1984} a^{5} + \frac{4211}{10912} a^{4} + \frac{613}{5456} a^{3} + \frac{29}{682} a^{2} - \frac{1203}{2728} a - \frac{1}{4}$, $\frac{1}{46800087877642084973296072407297948232433037487110768729890517615485483949749708026445328235890293559693506176} a^{17} + \frac{485088957131350753365917622503776056483363209489656576810815286855483652942443719382026033495028301197529}{23400043938821042486648036203648974116216518743555384364945258807742741974874854013222664117945146779846753088} a^{16} - \frac{168117483025790426807475764230090661472449681057602479569978604908004340666717520710897560350002780768643}{1509680254117486612041808787332191878465581854422928023544855406951144643540313162143397685028719147086887296} a^{15} - \frac{888780029006610340169008138844827939708471128942015882961596346768302772327947110341728750217502735105873}{5850010984705260621662009050912243529054129685888846091236314701935685493718713503305666029486286694961688272} a^{14} + \frac{136927147740968084113362274524633110564987981616607988533346043969482007785778940704369106400769918270153095}{11700021969410521243324018101824487058108259371777692182472629403871370987437427006611332058972573389923376544} a^{13} + \frac{39418208945325419320216372203565204407302961557377893809873891884470104187828089558941942369965797834737477}{5850010984705260621662009050912243529054129685888846091236314701935685493718713503305666029486286694961688272} a^{12} - \frac{119144335345390033875876187888128895170806676479355892584011598833397112433123129350070991068928140884738035}{11700021969410521243324018101824487058108259371777692182472629403871370987437427006611332058972573389923376544} a^{11} - \frac{544487663709753923121275861426441328679524862587246212013537297413411541254501494793461279678063376559489327}{11700021969410521243324018101824487058108259371777692182472629403871370987437427006611332058972573389923376544} a^{10} + \frac{1373152669178218135965680172242156366312613526091044271598813946213162197533811546125750825012057133998637}{12476696315020550512742221382910676681533734334073785318552524024389625153225728612755352768832389645346176} a^{9} + \frac{36823578863497799538429442256247748222210125720193914684001821867641128254121995078987830344840475217070529}{23400043938821042486648036203648974116216518743555384364945258807742741974874854013222664117945146779846753088} a^{8} + \frac{4937247210634037497321718878972748071312117021989497093324652837568153658538703767526311812817349764088395289}{46800087877642084973296072407297948232433037487110768729890517615485483949749708026445328235890293559693506176} a^{7} - \frac{247092757115874780683113995911564618550639389429388797416319108871594003966975307881153199922923796716556811}{1063638360855501931211274372893135187100750851979790198406602673079215544312493364237393823542961217265761504} a^{6} - \frac{33022328708448098480854079637164522541871186963953641807186756787490640715157048012845812837832453827539617}{365625686544078788853875565682015220565883105368052880702269668870980343357419593956604126842892918435105517} a^{5} - \frac{2233584769188208619057056789807303564731943001787172192056458528732720406767263250854194811636188657810220517}{11700021969410521243324018101824487058108259371777692182472629403871370987437427006611332058972573389923376544} a^{4} - \frac{1178886193086808664833922506084426191314114509943241801715233822253215475911955643553486693387492716077512091}{5850010984705260621662009050912243529054129685888846091236314701935685493718713503305666029486286694961688272} a^{3} - \frac{239161928968579212847812612347423076917699324141233725294447533308114485078333629245784504798622101453910253}{2925005492352630310831004525456121764527064842944423045618157350967842746859356751652833014743143347480844136} a^{2} - \frac{529725310310424740997911075816153501569153126545329947988106568955086555235771792168487484887674017093129591}{1462502746176315155415502262728060882263532421472211522809078675483921373429678375826416507371571673740422068} a + \frac{45903090430554649855299561481237656950064544263184119889253176467413367180116679182059402381827339211215}{4288864358288314238755138600375545109277221177337863703252430133383933646421344210634652514286133940587748}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{12}\times C_{12}\times C_{2880360}$, which has order $6636349440$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20721910881.979282 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-1106}) \), 3.3.305809.1, 3.3.49928.1, 6.0.26478636491772416.1, Deg 6, 9.9.14642685979950146048.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 7 | Data not computed | ||||||
| 79 | Data not computed | ||||||