Normalized defining polynomial
\( x^{18} - 5 x^{17} + 16 x^{16} - 39 x^{15} + 80 x^{14} - 141 x^{13} + 221 x^{12} - 312 x^{11} + 400 x^{10} - 465 x^{9} + 489 x^{8} - 463 x^{7} + 395 x^{6} - 300 x^{5} + 195 x^{4} - 101 x^{3} + 38 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1186012071116620699=-\,7^{4}\cdot 139\cdot 1373^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 139, 1373$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22.1660529321 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 92897280 |
| The 168 conjugacy class representatives for t18n966 are not computed |
| Character table for t18n966 is not computed |
Intermediate fields
| 9.1.92371321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.5.0.1 | $x^{5} - x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 7.5.0.1 | $x^{5} - x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $139$ | $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.7.0.1 | $x^{7} - 2 x + 4$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 139.7.0.1 | $x^{7} - 2 x + 4$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 1373 | Data not computed | ||||||