Normalized defining polynomial
\( x^{18} - 9 x^{17} - 12 x^{16} + 286 x^{15} - 165 x^{14} - 3807 x^{13} + 6441 x^{12} + 12183 x^{11} - 22956 x^{10} - 34024 x^{9} + 232287 x^{8} - 295545 x^{7} + 764284 x^{6} - 997932 x^{5} + 3322872 x^{4} - 4412288 x^{3} + 8997792 x^{2} - 5924352 x + 7562752 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11833920810399528639829186240681437183=-\,3^{18}\cdot 7^{9}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{16} a^{5} + \frac{3}{16} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{7}{32} a^{6} - \frac{1}{16} a^{5} - \frac{1}{32} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{11} - \frac{3}{32} a^{9} - \frac{1}{8} a^{8} - \frac{11}{64} a^{7} + \frac{1}{32} a^{6} - \frac{7}{64} a^{5} - \frac{5}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{13} - \frac{1}{128} a^{12} + \frac{1}{128} a^{11} - \frac{3}{64} a^{10} - \frac{1}{64} a^{9} - \frac{3}{128} a^{8} - \frac{19}{128} a^{7} + \frac{23}{128} a^{6} + \frac{29}{128} a^{5} - \frac{11}{64} a^{4} + \frac{7}{16} a^{3} + \frac{7}{16} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{256} a^{15} - \frac{1}{256} a^{14} - \frac{1}{256} a^{13} + \frac{1}{256} a^{12} - \frac{3}{128} a^{11} - \frac{1}{128} a^{10} + \frac{29}{256} a^{9} - \frac{19}{256} a^{8} - \frac{41}{256} a^{7} + \frac{29}{256} a^{6} + \frac{21}{128} a^{5} - \frac{1}{32} a^{4} + \frac{3}{32} a^{3} + \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{1971968} a^{16} - \frac{253}{1971968} a^{15} - \frac{5161}{1971968} a^{14} - \frac{14023}{1971968} a^{13} - \frac{14043}{985984} a^{12} - \frac{25755}{985984} a^{11} + \frac{15989}{1971968} a^{10} + \frac{67017}{1971968} a^{9} - \frac{136217}{1971968} a^{8} - \frac{31779}{1971968} a^{7} - \frac{240227}{985984} a^{6} + \frac{50877}{492992} a^{5} + \frac{2123}{246496} a^{4} + \frac{6795}{123248} a^{3} + \frac{28077}{61624} a^{2} + \frac{550}{7703} a - \frac{327}{7703}$, $\frac{1}{7524507544072771527015218454199823438723072} a^{17} + \frac{6076818011761629572124051672984167}{117570430376137055109612788346872241230048} a^{16} + \frac{3365554999305022835777802801330392311949}{1881126886018192881753804613549955859680768} a^{15} - \frac{239467397604455338872385674513687432207}{3762253772036385763507609227099911719361536} a^{14} - \frac{55503711369301922146894039615439836421619}{7524507544072771527015218454199823438723072} a^{13} + \frac{30450569913717443628351703216228875783995}{3762253772036385763507609227099911719361536} a^{12} - \frac{163457146441350291125040327749867632794545}{7524507544072771527015218454199823438723072} a^{11} - \frac{29479011481859178327955913466105038594761}{3762253772036385763507609227099911719361536} a^{10} - \frac{183101864321507966379817971005318070585095}{3762253772036385763507609227099911719361536} a^{9} - \frac{323997767735479622574497375701708039390475}{3762253772036385763507609227099911719361536} a^{8} - \frac{1131579650178603523668704742849477330199751}{7524507544072771527015218454199823438723072} a^{7} + \frac{89229854586161738584436999350612423707953}{940563443009096440876902306774977929840384} a^{6} + \frac{352616442769368304850569573250629298750849}{1881126886018192881753804613549955859680768} a^{5} - \frac{27624146211718605634423436871555330315807}{940563443009096440876902306774977929840384} a^{4} + \frac{114749818302409078685927154359506191601835}{235140860752274110219225576693744482460096} a^{3} + \frac{84071485314003414767227043630184341430663}{235140860752274110219225576693744482460096} a^{2} - \frac{6171763310745385951197396785408182436721}{29392607594034263777403197086718060307512} a + \frac{6645324036100409742430713986234684479531}{14696303797017131888701598543359030153756}$
Class group and class number
$C_{2}\times C_{140378}$, which has order $280756$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67295442.84873295 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.837.1, 3.3.961.1, 6.0.316767703.1, 6.0.240295167.4, 9.9.541530783546813.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $31$ | 31.6.4.1 | $x^{6} + 1085 x^{3} + 1660608$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 31.12.10.1 | $x^{12} + 69161 x^{6} + 2869530624$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |