Properties

Label 18.0.11802636430...7039.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{44}\cdot 79^{9}$
Root discriminant $130.35$
Ramified primes $3, 79$
Class number $4980185$ (GRH)
Class group $[4980185]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1164793689863, -400059814653, 463870664253, -133810000764, 82799864595, -20223847899, 8711912985, -1802014938, 595838997, -103473026, 27457146, -3920490, 850872, -95760, 17028, -1380, 198, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 198*x^16 - 1380*x^15 + 17028*x^14 - 95760*x^13 + 850872*x^12 - 3920490*x^11 + 27457146*x^10 - 103473026*x^9 + 595838997*x^8 - 1802014938*x^7 + 8711912985*x^6 - 20223847899*x^5 + 82799864595*x^4 - 133810000764*x^3 + 463870664253*x^2 - 400059814653*x + 1164793689863)
 
gp: K = bnfinit(x^18 - 9*x^17 + 198*x^16 - 1380*x^15 + 17028*x^14 - 95760*x^13 + 850872*x^12 - 3920490*x^11 + 27457146*x^10 - 103473026*x^9 + 595838997*x^8 - 1802014938*x^7 + 8711912985*x^6 - 20223847899*x^5 + 82799864595*x^4 - 133810000764*x^3 + 463870664253*x^2 - 400059814653*x + 1164793689863, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 198 x^{16} - 1380 x^{15} + 17028 x^{14} - 95760 x^{13} + 850872 x^{12} - 3920490 x^{11} + 27457146 x^{10} - 103473026 x^{9} + 595838997 x^{8} - 1802014938 x^{7} + 8711912985 x^{6} - 20223847899 x^{5} + 82799864595 x^{4} - 133810000764 x^{3} + 463870664253 x^{2} - 400059814653 x + 1164793689863 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-118026364303948717624477794198045747039=-\,3^{44}\cdot 79^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $130.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 79$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2133=3^{3}\cdot 79\)
Dirichlet character group:    $\lbrace$$\chi_{2133}(1,·)$, $\chi_{2133}(2053,·)$, $\chi_{2133}(712,·)$, $\chi_{2133}(394,·)$, $\chi_{2133}(1423,·)$, $\chi_{2133}(1105,·)$, $\chi_{2133}(1816,·)$, $\chi_{2133}(475,·)$, $\chi_{2133}(157,·)$, $\chi_{2133}(1186,·)$, $\chi_{2133}(868,·)$, $\chi_{2133}(1897,·)$, $\chi_{2133}(1579,·)$, $\chi_{2133}(238,·)$, $\chi_{2133}(949,·)$, $\chi_{2133}(631,·)$, $\chi_{2133}(1660,·)$, $\chi_{2133}(1342,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{17} - \frac{491062951429040340715010013617964518296288177276665316599323137442836}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{16} + \frac{259176158372532195828234970413609377213540439274470098649042413894386}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{15} + \frac{256662983209186302934643220989637777967013976250934573433075928041667}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{14} + \frac{204818412919197127996723207037049259535214418276617619789316531148579}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{13} + \frac{251836461130981502669092929873435996624054075614721745398167674832056}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{12} + \frac{456966078363652203894958565793169953416810597219264967698595998092201}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{11} + \frac{177665717030285358382213437860742810363916713113917980759803989577592}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{10} - \frac{260822788332224548422650585473888615011887136863032472946666052963346}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{9} + \frac{645957093485543038199774602280832148878594780033341552697174644046428}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{8} + \frac{54603953644529028832083454964466739772093185303377541253104730232386}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{7} + \frac{257461541556309051197248147907626386722344083646185674306341991849049}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{6} + \frac{680160452813925970596992259676542906196347974087587301363000261708163}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{5} + \frac{253764453057170408607875324173126602234785453293047767175974639033213}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{4} - \frac{368672693581110772472648293126767471782806853213249505583832674780597}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{3} + \frac{358663057877032194388255742162204342032226911137655988653545416772554}{1441092124932452219460866416585032360932844674687362422564884089713217} a^{2} + \frac{543486885307993879716895798393451828272789006493300494838775702581667}{1441092124932452219460866416585032360932844674687362422564884089713217} a - \frac{628128432936709037466839701810474006848947098963290928343806901302311}{1441092124932452219460866416585032360932844674687362422564884089713217}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4980185}$, which has order $4980185$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40934.03294431194 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-79}) \), \(\Q(\zeta_{9})^+\), 6.0.3234828879.4, \(\Q(\zeta_{27})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ $18$ $18$ $18$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
79Data not computed