Normalized defining polynomial
\( x^{18} + 60 x^{16} - 40 x^{15} + 1458 x^{14} - 1944 x^{13} + 19430 x^{12} - 36612 x^{11} + 165189 x^{10} - 348920 x^{9} + 964062 x^{8} - 1863372 x^{7} + 3719465 x^{6} - 5763924 x^{5} + 8297016 x^{4} - 9426624 x^{3} + 8598384 x^{2} - 5005632 x + 1560896 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11759452462469462530524552364032=-\,2^{18}\cdot 3^{18}\cdot 7^{15}\cdot 29^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{464} a^{15} - \frac{7}{58} a^{13} - \frac{5}{58} a^{12} - \frac{25}{232} a^{11} + \frac{7}{116} a^{10} - \frac{1}{8} a^{9} + \frac{11}{116} a^{8} - \frac{111}{464} a^{7} - \frac{27}{116} a^{6} + \frac{51}{232} a^{5} - \frac{4}{29} a^{4} + \frac{41}{464} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{928} a^{16} - \frac{7}{116} a^{14} - \frac{5}{116} a^{13} + \frac{33}{464} a^{12} - \frac{11}{116} a^{11} - \frac{1}{16} a^{10} + \frac{11}{232} a^{9} + \frac{5}{928} a^{8} - \frac{7}{29} a^{7} - \frac{7}{464} a^{6} + \frac{13}{232} a^{5} + \frac{273}{928} a^{4} - \frac{3}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{64805016604476289296835661837261711936} a^{17} - \frac{11165466613021575531421870095569}{69832992030685656569866014910842362} a^{16} + \frac{2841118034334960230315724577314977}{8100627075559536162104457729657713992} a^{15} - \frac{37853262204569053570763195218238460}{1012578384444942020263057216207214249} a^{14} + \frac{1761959713623030675561752782088583233}{32402508302238144648417830918630855968} a^{13} - \frac{354211382708949062533349343912207439}{8100627075559536162104457729657713992} a^{12} - \frac{27202460399321838180119814526072045}{1117327872490970505117856238573477792} a^{11} - \frac{108715267061640795460397406516740973}{16201254151119072324208915459315427984} a^{10} + \frac{7548879153607341145892900462289465725}{64805016604476289296835661837261711936} a^{9} - \frac{558844815157966525619859964811806695}{8100627075559536162104457729657713992} a^{8} + \frac{1909551474984851240418374989198751805}{32402508302238144648417830918630855968} a^{7} - \frac{3650867208599216970595384531299486409}{16201254151119072324208915459315427984} a^{6} + \frac{28602188859365228738023375380493867345}{64805016604476289296835661837261711936} a^{5} - \frac{140437518567800073491798707989261977}{558663936245485252558928119286738896} a^{4} + \frac{245956631309296712838161680150040741}{558663936245485252558928119286738896} a^{3} + \frac{92738894379130717722196122476997083}{279331968122742626279464059643369448} a^{2} + \frac{542084510999565122100465264232388}{1204017103977338906377000257083489} a - \frac{582065907916101349535111500004708}{1204017103977338906377000257083489}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{42639449198373999986293971855}{69832992030685656569866014910842362} a^{17} + \frac{816316713092285134115210569899}{1117327872490970505117856238573477792} a^{16} - \frac{15788985103421635249055425945037}{558663936245485252558928119286738896} a^{15} + \frac{8124745645093236156639540941823}{139665984061371313139732029821684724} a^{14} - \frac{33371932673078534472138570009033}{69832992030685656569866014910842362} a^{13} + \frac{774869289431173966480982639357131}{558663936245485252558928119286738896} a^{12} - \frac{1139675421737719523983947677347851}{279331968122742626279464059643369448} a^{11} + \frac{6566350349544145027543995492208317}{558663936245485252558928119286738896} a^{10} - \frac{1602850042071840637674577710856041}{69832992030685656569866014910842362} a^{9} + \frac{10939641303574977023386536858744615}{1117327872490970505117856238573477792} a^{8} - \frac{38854047747877583534215903434052629}{558663936245485252558928119286738896} a^{7} - \frac{167294381061989399636926188846084169}{558663936245485252558928119286738896} a^{6} + \frac{902680106682115419056872729852365}{4816068415909355625508001028333956} a^{5} - \frac{50210399499254927991628965383692161}{38528547327274845004064008226671648} a^{4} + \frac{709301424773104268338358140660044537}{558663936245485252558928119286738896} a^{3} - \frac{20837340264156651350551861510582503}{9632136831818711251016002056667912} a^{2} + \frac{352484035633233516218609317724685}{2408034207954677812754000514166978} a + \frac{840476940957241698571738350819013}{2408034207954677812754000514166978} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1037490994.38 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 159 conjugacy class representatives for t18n857 are not computed |
| Character table for t18n857 is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.9.6 | $x^{6} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |