Normalized defining polynomial
\( x^{18} + 192 x^{16} - x^{15} + 14310 x^{14} - 195 x^{13} + 542514 x^{12} - 36945 x^{11} + 11578902 x^{10} - 2483709 x^{9} + 146318868 x^{8} - 75110319 x^{7} + 1138108250 x^{6} - 1005798375 x^{5} + 5915118711 x^{4} - 5625118235 x^{3} + 22625119512 x^{2} - 9990904116 x + 55442113336 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11682260499388589326243647883020829239=-\,3^{27}\cdot 7^{15}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1197=3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1197}(1,·)$, $\chi_{1197}(1025,·)$, $\chi_{1197}(172,·)$, $\chi_{1197}(970,·)$, $\chi_{1197}(398,·)$, $\chi_{1197}(400,·)$, $\chi_{1197}(341,·)$, $\chi_{1197}(856,·)$, $\chi_{1197}(797,·)$, $\chi_{1197}(799,·)$, $\chi_{1197}(227,·)$, $\chi_{1197}(740,·)$, $\chi_{1197}(1196,·)$, $\chi_{1197}(626,·)$, $\chi_{1197}(1139,·)$, $\chi_{1197}(457,·)$, $\chi_{1197}(58,·)$, $\chi_{1197}(571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{794632} a^{15} - \frac{35}{284} a^{14} + \frac{52319}{794632} a^{13} + \frac{48691}{397316} a^{12} - \frac{44919}{794632} a^{11} + \frac{77565}{397316} a^{10} + \frac{30447}{794632} a^{9} - \frac{85855}{397316} a^{8} - \frac{102683}{794632} a^{7} - \frac{20439}{198658} a^{6} + \frac{193097}{794632} a^{5} - \frac{167837}{397316} a^{4} - \frac{319359}{794632} a^{3} - \frac{22471}{198658} a^{2} + \frac{36995}{99329} a + \frac{13494}{99329}$, $\frac{1}{2038117447624} a^{16} + \frac{942887}{2038117447624} a^{15} - \frac{95654530141}{2038117447624} a^{14} + \frac{100092304345}{2038117447624} a^{13} + \frac{48842944481}{2038117447624} a^{12} - \frac{355253874317}{2038117447624} a^{11} - \frac{12016325501}{2038117447624} a^{10} + \frac{181062917585}{2038117447624} a^{9} - \frac{419103909363}{2038117447624} a^{8} - \frac{9338380875}{2038117447624} a^{7} + \frac{951859604291}{2038117447624} a^{6} - \frac{929546231089}{2038117447624} a^{5} + \frac{319038121393}{2038117447624} a^{4} - \frac{890017041971}{2038117447624} a^{3} - \frac{352340761057}{1019058723812} a^{2} + \frac{1583706707}{509529361906} a - \frac{33557844020}{254764680953}$, $\frac{1}{19708365919431061456278559484870396399580597307340376728371813496} a^{17} + \frac{1748902383705430277867910870436632810169552054581}{69395654645884019212248448890388719716833089110353439184407794} a^{16} + \frac{6202471685840506594849670783054256422816080121198239732693}{19708365919431061456278559484870396399580597307340376728371813496} a^{15} + \frac{657128835335620829843020170630762262425914593183389872247762}{13610749944358467856545966495076240607445163886284790558267827} a^{14} - \frac{1940233285111918887228130991899815857103307514934163116854629569}{19708365919431061456278559484870396399580597307340376728371813496} a^{13} - \frac{130221577880945152508835872304289804726255098143069291080984007}{4927091479857765364069639871217599099895149326835094182092953374} a^{12} - \frac{3663306585194064926642462518008747633969110976889465179423673311}{19708365919431061456278559484870396399580597307340376728371813496} a^{11} + \frac{413110550181584559747384292536514499976567319376508707127655233}{2463545739928882682034819935608799549947574663417547091046476687} a^{10} + \frac{3920161178830033437743494788405372141073863432377679652358695271}{19708365919431061456278559484870396399580597307340376728371813496} a^{9} - \frac{671232396971557627763340019572537093076329424831616067481884403}{9854182959715530728139279742435198199790298653670188364185906748} a^{8} + \frac{52079658279022610063675290303941500951745596362281617821099177}{277582618583536076848993795561554878867332356441413756737631176} a^{7} - \frac{1221263664257086168991586629975021929601336878709675155022152637}{2463545739928882682034819935608799549947574663417547091046476687} a^{6} + \frac{4090347397479562780385856029127462712585639040835638827065528071}{19708365919431061456278559484870396399580597307340376728371813496} a^{5} + \frac{2428712804431979563642549318865246385771480039048145371887227365}{9854182959715530728139279742435198199790298653670188364185906748} a^{4} - \frac{4104868239497203365624123546509192137599397422483435114459578479}{9854182959715530728139279742435198199790298653670188364185906748} a^{3} - \frac{186511062511419758851053057982745786551763952428708879296629322}{2463545739928882682034819935608799549947574663417547091046476687} a^{2} - \frac{651586585040252422811390757908079250686164061357056699161993581}{4927091479857765364069639871217599099895149326835094182092953374} a + \frac{1172964469595346792128620726477251485589771026224586573053356240}{2463545739928882682034819935608799549947574663417547091046476687}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{103208}$, which has order $3302656$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-399}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, 6.0.46306954071.4, 6.0.3112538751.2, 6.0.2269040749479.8, 6.0.2269040749479.7, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $19$ | 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |