Normalized defining polynomial
\( x^{18} - x^{17} + 26 x^{16} - 19 x^{15} + 319 x^{14} - 179 x^{13} + 2258 x^{12} - 914 x^{11} + 9881 x^{10} - 2825 x^{9} + 26418 x^{8} - 4536 x^{7} + 41176 x^{6} - 4496 x^{5} + 32480 x^{4} + 10240 x^{2} - 1280 x + 512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11639651445632252525480175367=-\,7^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(133=7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{133}(64,·)$, $\chi_{133}(1,·)$, $\chi_{133}(6,·)$, $\chi_{133}(83,·)$, $\chi_{133}(20,·)$, $\chi_{133}(85,·)$, $\chi_{133}(92,·)$, $\chi_{133}(99,·)$, $\chi_{133}(36,·)$, $\chi_{133}(104,·)$, $\chi_{133}(106,·)$, $\chi_{133}(43,·)$, $\chi_{133}(111,·)$, $\chi_{133}(118,·)$, $\chi_{133}(55,·)$, $\chi_{133}(120,·)$, $\chi_{133}(125,·)$, $\chi_{133}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} + \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{3}{8} a^{7} - \frac{3}{8} a^{6} - \frac{7}{16} a^{5} - \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{1}{16} a^{12} + \frac{1}{32} a^{11} - \frac{1}{32} a^{10} + \frac{1}{32} a^{9} + \frac{3}{16} a^{8} - \frac{3}{16} a^{7} + \frac{9}{32} a^{6} + \frac{15}{32} a^{5} + \frac{3}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{1}{32} a^{13} + \frac{1}{64} a^{12} - \frac{1}{64} a^{11} + \frac{1}{64} a^{10} - \frac{13}{32} a^{9} + \frac{13}{32} a^{8} - \frac{23}{64} a^{7} - \frac{17}{64} a^{6} - \frac{13}{32} a^{5} + \frac{7}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4736} a^{16} - \frac{5}{4736} a^{15} - \frac{21}{2368} a^{14} - \frac{3}{4736} a^{13} - \frac{117}{4736} a^{12} + \frac{553}{4736} a^{11} - \frac{453}{2368} a^{10} + \frac{27}{64} a^{9} - \frac{671}{4736} a^{8} - \frac{733}{4736} a^{7} - \frac{793}{2368} a^{6} - \frac{73}{592} a^{5} + \frac{167}{592} a^{4} - \frac{67}{296} a^{3} + \frac{7}{37} a^{2} + \frac{6}{37} a - \frac{5}{37}$, $\frac{1}{3286709792573598033802496} a^{17} - \frac{215770965449050865501}{3286709792573598033802496} a^{16} - \frac{2445858885533688158913}{1643354896286799016901248} a^{15} - \frac{23067760764204942904747}{3286709792573598033802496} a^{14} + \frac{491020196381887664779}{29085927367907947201792} a^{13} + \frac{42309349823304998863041}{3286709792573598033802496} a^{12} + \frac{23146089489841244826995}{1643354896286799016901248} a^{11} + \frac{72851807720290550079211}{1643354896286799016901248} a^{10} + \frac{1517413864507216216671401}{3286709792573598033802496} a^{9} - \frac{859923161310066372971813}{3286709792573598033802496} a^{8} + \frac{499984370557850566690115}{1643354896286799016901248} a^{7} + \frac{83675598202111999661129}{205419362035849877112656} a^{6} + \frac{12265361935070684567021}{25677420254481234639082} a^{5} + \frac{2336123684059370245461}{12838710127240617319541} a^{4} - \frac{15235432006187974529779}{51354840508962469278164} a^{3} - \frac{16876346955721589598461}{51354840508962469278164} a^{2} - \frac{8039987531013250719967}{25677420254481234639082} a - \frac{1897745210837244605108}{12838710127240617319541}$
Class group and class number
$C_{2}\times C_{74}$, which has order $148$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.361.1, 6.0.44700103.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19 | Data not computed | ||||||