Normalized defining polynomial
\( x^{18} + 762 x^{16} + 218313 x^{14} + 30376749 x^{12} + 2249058240 x^{10} + 89192075616 x^{8} + 1757405549952 x^{6} + 14140144366848 x^{4} + 39992306079744 x^{2} + 9792653414400 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1162725121036380649066150832445210229839758684897673216=-\,2^{18}\cdot 3^{27}\cdot 127^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1008.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4572=2^{2}\cdot 3^{2}\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4572}(1,·)$, $\chi_{4572}(2183,·)$, $\chi_{4572}(2893,·)$, $\chi_{4572}(3085,·)$, $\chi_{4572}(1487,·)$, $\chi_{4572}(2389,·)$, $\chi_{4572}(1883,·)$, $\chi_{4572}(3107,·)$, $\chi_{4572}(1957,·)$, $\chi_{4572}(361,·)$, $\chi_{4572}(2305,·)$, $\chi_{4572}(4211,·)$, $\chi_{4572}(2267,·)$, $\chi_{4572}(2615,·)$, $\chi_{4572}(2689,·)$, $\chi_{4572}(1465,·)$, $\chi_{4572}(1679,·)$, $\chi_{4572}(4571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{15} a^{6} - \frac{2}{5} a^{2}$, $\frac{1}{30} a^{7} + \frac{3}{10} a^{3} - \frac{1}{2} a$, $\frac{1}{60} a^{8} - \frac{1}{30} a^{6} + \frac{3}{20} a^{4} - \frac{1}{20} a^{2}$, $\frac{1}{120} a^{9} - \frac{1}{60} a^{7} + \frac{3}{40} a^{5} + \frac{19}{40} a^{3} - \frac{1}{2} a$, $\frac{1}{1200} a^{10} - \frac{1}{120} a^{8} + \frac{11}{400} a^{6} + \frac{39}{80} a^{4} - \frac{7}{100} a^{2}$, $\frac{1}{2400} a^{11} - \frac{1}{240} a^{9} + \frac{11}{800} a^{7} + \frac{7}{160} a^{5} - \frac{7}{200} a^{3} + \frac{1}{5} a$, $\frac{1}{288000} a^{12} + \frac{11}{48000} a^{10} + \frac{451}{96000} a^{8} + \frac{1991}{96000} a^{6} - \frac{357}{4000} a^{4} - \frac{831}{2000} a^{2} + \frac{9}{20}$, $\frac{1}{576000} a^{13} + \frac{11}{96000} a^{11} + \frac{451}{192000} a^{9} + \frac{1991}{192000} a^{7} - \frac{357}{8000} a^{5} + \frac{1169}{4000} a^{3} + \frac{9}{40} a$, $\frac{1}{5760000} a^{14} - \frac{1}{576000} a^{12} + \frac{59}{1920000} a^{10} - \frac{2617}{384000} a^{8} - \frac{3811}{480000} a^{6} + \frac{67}{8000} a^{4} - \frac{2123}{5000} a^{2} + \frac{29}{100}$, $\frac{1}{1923840000} a^{15} - \frac{7}{21376000} a^{13} + \frac{95219}{641280000} a^{11} - \frac{15247}{42752000} a^{9} - \frac{21713}{5010000} a^{7} + \frac{61801}{2672000} a^{5} + \frac{1426959}{3340000} a^{3} + \frac{7297}{16700} a$, $\frac{1}{15477301993753248548578672320000000} a^{16} - \frac{304423584645178740436123217}{7738650996876624274289336160000000} a^{14} - \frac{560036284615226108520517541}{5159100664584416182859557440000000} a^{12} + \frac{49356926101961853216910936873}{1719700221528138727619852480000000} a^{10} + \frac{1255393027509118252337479841813}{429925055382034681904963120000000} a^{8} + \frac{120582860642500684132816802247}{6717578990344291904765048750000} a^{6} + \frac{969008884632599105303888730577}{13435157980688583809530097500000} a^{4} - \frac{890714976241433654775792659}{2115106734995054126185468750} a^{2} - \frac{180624958659359347005638477}{402250238942771970345212500}$, $\frac{1}{30954603987506497097157344640000000} a^{17} + \frac{1286596951327957026238283}{15477301993753248548578672320000000} a^{15} - \frac{10690514206163770461294312623}{30954603987506497097157344640000000} a^{13} - \frac{715015067946651155711875664127}{3439400443056277455239704960000000} a^{11} - \frac{3424667827518350791037964031937}{859850110764069363809926240000000} a^{9} + \frac{8732396767370061100946017130231}{644887583073052022857444680000000} a^{7} + \frac{741455924462673001679602019327}{26870315961377167619060195000000} a^{5} - \frac{4905268094223871026991170397}{33841707759920866018967500000} a^{3} + \frac{30526959294469694382621106483}{67175789903442919047650487500} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2217190170}$, which has order $17737521360$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88513037217.36226 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-381}) \), 3.3.16129.1, 6.0.57090302335296.2, 9.9.35965394160281315137521.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| 127 | Data not computed | ||||||