Normalized defining polynomial
\( x^{18} - 5 x^{17} + 16 x^{16} - 34 x^{15} + 63 x^{14} - 91 x^{13} + 92 x^{12} - 7 x^{11} - 128 x^{10} + 193 x^{9} - 128 x^{8} - 7 x^{7} + 92 x^{6} - 91 x^{5} + 63 x^{4} - 34 x^{3} + 16 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1159072634263427734375=-\,5^{12}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{12} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{3}{8} a^{4} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{8} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{2} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{1688} a^{16} + \frac{15}{1688} a^{14} + \frac{41}{1688} a^{13} + \frac{21}{844} a^{12} + \frac{289}{1688} a^{11} - \frac{101}{422} a^{10} + \frac{5}{1688} a^{9} + \frac{45}{844} a^{8} + \frac{5}{1688} a^{7} - \frac{101}{422} a^{6} + \frac{711}{1688} a^{5} + \frac{58}{211} a^{4} + \frac{41}{1688} a^{3} - \frac{829}{1688} a^{2} - \frac{3}{8} a + \frac{1}{1688}$, $\frac{1}{21944} a^{17} - \frac{3}{10972} a^{16} - \frac{407}{21944} a^{15} + \frac{373}{21944} a^{14} - \frac{1259}{21944} a^{13} + \frac{37}{21944} a^{12} - \frac{1505}{21944} a^{11} + \frac{3695}{21944} a^{10} - \frac{573}{21944} a^{9} + \frac{4107}{21944} a^{8} - \frac{4443}{21944} a^{7} - \frac{3195}{21944} a^{6} - \frac{4435}{21944} a^{5} + \frac{5}{104} a^{4} - \frac{4019}{10972} a^{3} - \frac{4099}{21944} a^{2} - \frac{3903}{10972} a + \frac{1318}{2743}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{27109}{10972} a^{17} - \frac{261283}{21944} a^{16} + \frac{812637}{21944} a^{15} - \frac{831379}{10972} a^{14} + \frac{376703}{2743} a^{13} - \frac{1048051}{5486} a^{12} + \frac{484435}{2743} a^{11} + \frac{98517}{2743} a^{10} - \frac{3593581}{10972} a^{9} + \frac{2235179}{5486} a^{8} - \frac{2214161}{10972} a^{7} - \frac{1056147}{10972} a^{6} + \frac{2480535}{10972} a^{5} - \frac{1844107}{10972} a^{4} + \frac{553597}{5486} a^{3} - \frac{1098597}{21944} a^{2} + \frac{444357}{21944} a - \frac{45925}{10972} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13425.8394152 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.175.1 x3, \(\Q(\zeta_{7})^+\), 6.0.214375.1, 6.0.10504375.1 x2, \(\Q(\zeta_{7})\), 9.3.12867859375.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.10504375.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |