Normalized defining polynomial
\( x^{18} + 48 x^{16} - 518 x^{15} + 12087 x^{14} + 43290 x^{13} + 1053253 x^{12} - 49284 x^{11} + 62693295 x^{10} + 334422428 x^{9} + 5992436430 x^{8} + 23739397950 x^{7} + 222938790160 x^{6} + 1003108842378 x^{5} + 11209338881445 x^{4} + 60709569882666 x^{3} + 349997531677587 x^{2} + 954995916305826 x + 2359097078790079 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1152969742748338361522490256327499776524288000000000=-\,2^{33}\cdot 3^{27}\cdot 5^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $686.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{222} a^{12} - \frac{5}{222} a^{10} + \frac{23}{74} a^{8} - \frac{1}{6} a^{7} + \frac{59}{222} a^{6} + \frac{17}{74} a^{4} + \frac{1}{6} a^{3} + \frac{19}{74} a^{2} + \frac{1}{6} a - \frac{11}{222}$, $\frac{1}{222} a^{13} - \frac{5}{222} a^{11} - \frac{5}{222} a^{9} - \frac{1}{6} a^{8} + \frac{59}{222} a^{7} + \frac{1}{3} a^{6} + \frac{17}{74} a^{5} + \frac{1}{6} a^{4} + \frac{19}{74} a^{3} + \frac{1}{6} a^{2} - \frac{11}{222} a - \frac{1}{3}$, $\frac{1}{222} a^{14} + \frac{7}{222} a^{10} + \frac{71}{222} a^{8} - \frac{1}{6} a^{7} - \frac{4}{37} a^{6} - \frac{1}{3} a^{5} + \frac{15}{37} a^{4} - \frac{1}{2} a^{3} + \frac{26}{111} a^{2} + \frac{1}{6} a - \frac{3}{37}$, $\frac{1}{666} a^{15} + \frac{1}{666} a^{14} + \frac{1}{666} a^{13} + \frac{1}{666} a^{12} + \frac{13}{222} a^{11} + \frac{1}{333} a^{10} + \frac{29}{666} a^{9} + \frac{251}{666} a^{8} + \frac{4}{37} a^{7} - \frac{13}{222} a^{6} + \frac{67}{666} a^{5} - \frac{22}{333} a^{4} - \frac{38}{333} a^{3} + \frac{110}{333} a^{2} - \frac{59}{222} a - \frac{251}{666}$, $\frac{1}{666} a^{16} - \frac{1}{666} a^{12} - \frac{1}{18} a^{11} - \frac{103}{333} a^{8} + \frac{1}{3} a^{7} + \frac{25}{666} a^{6} - \frac{1}{6} a^{5} - \frac{23}{666} a^{4} + \frac{5}{18} a^{3} + \frac{22}{333} a^{2} + \frac{7}{18} a - \frac{104}{333}$, $\frac{1}{47891350184100167802884414800644795540430966445934548023052394822889219579734} a^{17} + \frac{7924883524436320319730286295418196715084442894909523865896613948843668343}{15963783394700055934294804933548265180143655481978182674350798274296406526578} a^{16} + \frac{5889091743142934693796923691746901061070615171130535450050924647017737023}{23945675092050083901442207400322397770215483222967274011526197411444609789867} a^{15} - \frac{48423202500018863179140385248138785802900537394975280683216715651405937485}{47891350184100167802884414800644795540430966445934548023052394822889219579734} a^{14} - \frac{7924674976741282264073223325074914676610727918197112664241269066170962783}{15963783394700055934294804933548265180143655481978182674350798274296406526578} a^{13} - \frac{18619441486642573040321953726655407601827093616309016579232209936721994065}{15963783394700055934294804933548265180143655481978182674350798274296406526578} a^{12} - \frac{70040640719590798410624312865361426238308252603477419778571057799983937129}{5321261131566685311431601644516088393381218493992727558116932758098802175526} a^{11} - \frac{1950200183059470978788497657920759374638776795335589722975641689587169969955}{47891350184100167802884414800644795540430966445934548023052394822889219579734} a^{10} - \frac{243700469990439437505171117039070037007761727612305386903931601252552947455}{15963783394700055934294804933548265180143655481978182674350798274296406526578} a^{9} + \frac{19596032794494467042476958559480230580708879493555058757156379759086564015305}{47891350184100167802884414800644795540430966445934548023052394822889219579734} a^{8} - \frac{2323851081935772643532005023455330021708197894688616216451929788732873593463}{47891350184100167802884414800644795540430966445934548023052394822889219579734} a^{7} + \frac{2261506266886079719100019722874711604078566260931879022912867668120911007517}{15963783394700055934294804933548265180143655481978182674350798274296406526578} a^{6} - \frac{12619639069006813782018362884539426223096590544116245983607488078736075734417}{47891350184100167802884414800644795540430966445934548023052394822889219579734} a^{5} + \frac{2395176888865205427004351811901480894867557416584340739089100317991120542957}{5321261131566685311431601644516088393381218493992727558116932758098802175526} a^{4} - \frac{9476213505737362129617360582476571479004541829082947207027789592990784428463}{23945675092050083901442207400322397770215483222967274011526197411444609789867} a^{3} - \frac{7717530800264129030131115557209100484552558480264835199090049343147990203570}{23945675092050083901442207400322397770215483222967274011526197411444609789867} a^{2} + \frac{22264668593029357722763525195031026150375555503007097990046526400125051164641}{47891350184100167802884414800644795540430966445934548023052394822889219579734} a + \frac{11897114580322744438430337526868401088197242821326415857140181399582868477021}{23945675092050083901442207400322397770215483222967274011526197411444609789867}$
Class group and class number
$C_{6}\times C_{6}\times C_{258317202}$, which has order $9299419272$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118546543.87559307 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-30}) \), 3.3.110889.1, 3.3.148.1, 6.0.2360903101632000.1, 6.0.9462528000.12, 9.9.3228844269788073792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |