Normalized defining polynomial
\( x^{18} - 4 x^{17} + 73 x^{16} - 30 x^{15} + 3926 x^{14} - 2892 x^{13} + 101877 x^{12} + 389884 x^{11} + 727903 x^{10} + 6714132 x^{9} + 19205829 x^{8} + 49846322 x^{7} + 310395661 x^{6} + 187135216 x^{5} + 1909020302 x^{4} + 450056094 x^{3} + 3062291750 x^{2} + 337394588 x + 3057477097 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11464615459611696074365702834006806143172608=-\,2^{18}\cdot 17^{9}\cdot 79^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $246.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{12} + \frac{1}{4} a^{11} + \frac{1}{12} a^{10} + \frac{5}{12} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{5}{12} a^{4} - \frac{1}{12} a^{3} - \frac{1}{4} a^{2} + \frac{5}{12} a - \frac{5}{12}$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{12} + \frac{1}{3} a^{11} + \frac{1}{12} a^{10} + \frac{1}{3} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{6} a^{5} + \frac{1}{12} a^{4} - \frac{1}{6} a^{3} - \frac{1}{12} a^{2} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{12} + \frac{1}{3} a^{11} - \frac{1}{12} a^{10} - \frac{1}{3} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{5}{12} a^{6} - \frac{1}{6} a^{5} - \frac{1}{12} a^{4} - \frac{1}{6} a^{3} + \frac{5}{12} a^{2} - \frac{5}{12} a + \frac{1}{12}$, $\frac{1}{84} a^{16} + \frac{1}{42} a^{15} - \frac{1}{84} a^{14} + \frac{1}{42} a^{13} + \frac{1}{14} a^{12} + \frac{2}{7} a^{11} - \frac{4}{21} a^{10} - \frac{1}{14} a^{9} + \frac{3}{14} a^{8} + \frac{17}{42} a^{7} + \frac{1}{14} a^{6} - \frac{2}{7} a^{5} + \frac{1}{3} a^{4} + \frac{3}{7} a^{3} - \frac{5}{28} a^{2} + \frac{1}{21} a + \frac{11}{28}$, $\frac{1}{4223933870573809842514110384207048909820661537199800202525622984467758191742678796} a^{17} + \frac{938681207464468112745389627992922640445743031589122624059285790240508117066111}{2111966935286904921257055192103524454910330768599900101262811492233879095871339398} a^{16} - \frac{548781920833740976736705753528431390553219158993066515208645272575657533028897}{14367122008754455246646633959887921461975039242176191165053139402951558475315234} a^{15} - \frac{3701107244238528389257798769688315410583430776605467800231794593169728430120754}{117331496404828051180947510672418025272796153811105561181267305124104394215074411} a^{14} - \frac{6179504176368055727172906113718718016637732091560104756773554710569661507807347}{603419124367687120359158626315292701402951648171400028932231854923965455963239828} a^{13} + \frac{71704287146854521819527700686043045788365366417543345089922602619875706263121919}{2111966935286904921257055192103524454910330768599900101262811492233879095871339398} a^{12} + \frac{1773583001623087689084854875998828353443026790297131304095812377617052124795210687}{4223933870573809842514110384207048909820661537199800202525622984467758191742678796} a^{11} + \frac{18815090436676173768192098459824839359716313676547951271221436685173042374668026}{150854781091921780089789656578823175350737912042850007233057963730991363990809957} a^{10} - \frac{971037603130890314338914057379695544892570596909135331331335332709697498230845825}{4223933870573809842514110384207048909820661537199800202525622984467758191742678796} a^{9} + \frac{442104164705157392079566186645228302351513493907816473747937053162026158618290573}{2111966935286904921257055192103524454910330768599900101262811492233879095871339398} a^{8} + \frac{1477591083262211278056821989141036734057486361650852966359381584320940391319943775}{4223933870573809842514110384207048909820661537199800202525622984467758191742678796} a^{7} + \frac{22323768449586535447218174196285628912071167938040531415068412321993177251448273}{50284927030640593363263218859607725116912637347616669077685987910330454663603319} a^{6} - \frac{1204149110442660833401420128384615065892798058157337598881752886853792107531716681}{4223933870573809842514110384207048909820661537199800202525622984467758191742678796} a^{5} - \frac{142982544228092243490776862919346447959107421588577135818088910058260200759755912}{351994489214484153542842532017254075818388461433316683543801915372313182645223233} a^{4} + \frac{945294082895441512184593189151676314175287440308457986228575310922086463422517465}{2111966935286904921257055192103524454910330768599900101262811492233879095871339398} a^{3} + \frac{1474704022167821670963084612920860811546465342955305544631073891704897872326050}{21550683013131682869969950939831882192962558863264286747579709104427337712972851} a^{2} - \frac{40936218293652692811277419087812170131329113805101722820609065156890516997298697}{86202732052526731479879803759327528771850235453057146990318836417709350851891404} a - \frac{78689998711086501648182272819815755124870793892732079472050164989058642729651498}{1055983467643452460628527596051762227455165384299950050631405746116939547935669699}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{84}\times C_{5460}$, which has order $14676480$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9044146.559729666 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-17}) \), 3.3.6241.1, 3.3.316.1, 6.0.12247151868992.2, 6.0.1962370112.2, 9.9.1229050175114176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $79$ | 79.3.2.1 | $x^{3} - 79$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 79.3.2.1 | $x^{3} - 79$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 79.6.5.1 | $x^{6} - 79$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 79.6.5.1 | $x^{6} - 79$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |