Normalized defining polynomial
\( x^{18} - 288 x^{16} - 684 x^{15} + 25407 x^{14} + 114912 x^{13} - 134160 x^{12} - 332424 x^{11} + 13658103 x^{10} + 37696646 x^{9} + 4537944 x^{8} + 95193990 x^{7} + 2434990194 x^{6} + 2758880142 x^{5} + 9735437304 x^{4} + 20624060568 x^{3} + 135663898545 x^{2} - 38029861350 x + 1084361854375 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-114373117921862173420296089417336295857933279821824=-\,2^{27}\cdot 3^{45}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $603.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4104=2^{3}\cdot 3^{3}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4104}(1,·)$, $\chi_{4104}(577,·)$, $\chi_{4104}(3341,·)$, $\chi_{4104}(3725,·)$, $\chi_{4104}(3217,·)$, $\chi_{4104}(1493,·)$, $\chi_{4104}(2905,·)$, $\chi_{4104}(1753,·)$, $\chi_{4104}(461,·)$, $\chi_{4104}(3749,·)$, $\chi_{4104}(2981,·)$, $\chi_{4104}(3505,·)$, $\chi_{4104}(1897,·)$, $\chi_{4104}(365,·)$, $\chi_{4104}(1201,·)$, $\chi_{4104}(2933,·)$, $\chi_{4104}(505,·)$, $\chi_{4104}(1301,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{45} a^{9} + \frac{1}{3} a^{3} + \frac{1}{5} a + \frac{2}{9}$, $\frac{1}{225} a^{10} + \frac{2}{25} a^{6} - \frac{1}{3} a^{4} + \frac{9}{25} a^{2} + \frac{4}{9} a$, $\frac{1}{675} a^{11} - \frac{1}{675} a^{10} - \frac{1}{135} a^{9} + \frac{1}{15} a^{8} + \frac{7}{75} a^{7} - \frac{2}{75} a^{6} + \frac{1}{45} a^{5} + \frac{17}{45} a^{4} - \frac{13}{225} a^{3} + \frac{19}{675} a^{2} - \frac{47}{135} a - \frac{2}{27}$, $\frac{1}{675} a^{12} - \frac{1}{135} a^{9} - \frac{1}{25} a^{8} + \frac{1}{15} a^{7} - \frac{2}{45} a^{6} - \frac{11}{75} a^{4} - \frac{4}{135} a^{3} - \frac{2}{5} a^{2} + \frac{4}{15} a + \frac{7}{27}$, $\frac{1}{3375} a^{13} - \frac{2}{3375} a^{12} + \frac{2}{3375} a^{11} + \frac{1}{675} a^{10} + \frac{11}{1125} a^{9} - \frac{8}{125} a^{8} + \frac{47}{1125} a^{7} + \frac{16}{225} a^{6} + \frac{22}{1125} a^{5} + \frac{868}{3375} a^{4} + \frac{457}{3375} a^{3} + \frac{76}{675} a^{2} + \frac{38}{135} a + \frac{4}{9}$, $\frac{1}{16875} a^{14} - \frac{4}{5625} a^{12} - \frac{11}{16875} a^{11} + \frac{2}{1875} a^{10} - \frac{1}{225} a^{9} + \frac{368}{5625} a^{8} + \frac{6}{625} a^{7} - \frac{181}{1875} a^{6} + \frac{11}{135} a^{5} + \frac{104}{625} a^{4} - \frac{1192}{5625} a^{3} - \frac{868}{3375} a^{2} + \frac{17}{75} a - \frac{1}{9}$, $\frac{1}{421875} a^{15} - \frac{1}{46875} a^{14} - \frac{52}{421875} a^{13} + \frac{302}{421875} a^{12} - \frac{88}{421875} a^{11} - \frac{29}{140625} a^{10} + \frac{142}{15625} a^{9} - \frac{1}{46875} a^{8} + \frac{5341}{140625} a^{7} - \frac{38264}{421875} a^{6} + \frac{13306}{140625} a^{5} - \frac{101068}{421875} a^{4} - \frac{82561}{421875} a^{3} - \frac{29093}{84375} a^{2} + \frac{811}{5625} a - \frac{53}{225}$, $\frac{1}{19782106241765625} a^{16} - \frac{11252597213}{19782106241765625} a^{15} - \frac{245045380241}{19782106241765625} a^{14} + \frac{472412720932}{3956421248353125} a^{13} - \frac{8703545347396}{19782106241765625} a^{12} + \frac{2763527908228}{3956421248353125} a^{11} + \frac{5151986080669}{6594035413921875} a^{10} + \frac{37476274545196}{3956421248353125} a^{9} - \frac{596096005524247}{6594035413921875} a^{8} + \frac{184460109313369}{19782106241765625} a^{7} - \frac{1669781795538626}{19782106241765625} a^{6} + \frac{45263415596132}{3956421248353125} a^{5} + \frac{202382386683271}{482490396140625} a^{4} + \frac{4098409547601629}{19782106241765625} a^{3} + \frac{276579192437962}{3956421248353125} a^{2} + \frac{63979347927581}{263761416556875} a + \frac{4196676620786}{31651369986825}$, $\frac{1}{104766617680581639762906033903050913491296973738626171875} a^{17} + \frac{364138789414390302141676046770541802808}{34922205893527213254302011301016971163765657912875390625} a^{16} + \frac{69221422187328896384142875978339396965597722060538}{104766617680581639762906033903050913491296973738626171875} a^{15} - \frac{587003151687005800554624533526211914182624141617097}{104766617680581639762906033903050913491296973738626171875} a^{14} - \frac{901907972422986731008154737557663242649010896577507}{34922205893527213254302011301016971163765657912875390625} a^{13} + \frac{77585070872036141018727280743064968738363699364522883}{104766617680581639762906033903050913491296973738626171875} a^{12} - \frac{77560260478019724480312033243798534086126463386923318}{104766617680581639762906033903050913491296973738626171875} a^{11} + \frac{185818096649377326861282337438523755812628425666913744}{104766617680581639762906033903050913491296973738626171875} a^{10} - \frac{97164206053642185880293496333955115249223543098983947}{34922205893527213254302011301016971163765657912875390625} a^{9} - \frac{8218331012025985680363108043787990788247861471457892313}{104766617680581639762906033903050913491296973738626171875} a^{8} - \frac{1516341565752189197067385637817059896456239465474841106}{34922205893527213254302011301016971163765657912875390625} a^{7} + \frac{8163608825688492718124388218520411192780123903224523358}{104766617680581639762906033903050913491296973738626171875} a^{6} + \frac{2028225886647553191043246251409348942233689278335395311}{104766617680581639762906033903050913491296973738626171875} a^{5} - \frac{8106066331652452069301115752362371676501208932650577748}{34922205893527213254302011301016971163765657912875390625} a^{4} - \frac{15046391513485913016061154724302852629473235674222533227}{104766617680581639762906033903050913491296973738626171875} a^{3} + \frac{2540856089152034738985736312338938259475194947560175779}{20953323536116327952581206780610182698259394747725234375} a^{2} - \frac{33805931113015488260655527009074158282380658856597304}{4190664707223265590516241356122036539651878949545046875} a - \frac{1839825057134036004784565215351925583411028443416329}{6208392158849282356320357564625239318002783628955625}$
Class group and class number
$C_{7}\times C_{409181346}$, which has order $2864269422$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5772307958.489205 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 3.3.29241.2, 6.0.1313335420416.1, 9.9.532962204162830310969.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | $18$ | $18$ | R | $18$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||