Normalized defining polynomial
\( x^{18} - 9 x^{17} + 153 x^{16} - 906 x^{15} + 18369 x^{14} + 937467 x^{13} - 814452 x^{12} + \cdots + 62\!\cdots\!28 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-113761460893702510484735982000599907732061184340694743130306972736028672\)
\(\medspace = -\,2^{18}\cdot 3^{39}\cdot 2287^{14}\)
|
| |
| Root discriminant: | \(8862.48\) |
| |
| Galois root discriminant: | $2^{3/2}3^{13/6}2287^{5/6}\approx 19261.76954796617$ | ||
| Ramified primes: |
\(2\), \(3\), \(2287\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $S_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}$, $\frac{1}{4574}a^{12}+\frac{1077}{4574}a^{11}+\frac{513}{2287}a^{10}+\frac{547}{2287}a^{9}-\frac{621}{4574}a^{8}+\frac{842}{2287}a^{7}-\frac{1017}{4574}a^{6}+\frac{559}{4574}a^{5}-\frac{615}{2287}a^{4}-\frac{751}{2287}a^{3}+\frac{1451}{4574}a^{2}+\frac{114}{2287}a+\frac{913}{2287}$, $\frac{1}{4574}a^{13}+\frac{303}{2287}a^{11}+\frac{713}{4574}a^{10}-\frac{527}{2287}a^{9}+\frac{205}{2287}a^{8}+\frac{1193}{4574}a^{7}-\frac{946}{2287}a^{6}-\frac{896}{2287}a^{5}-\frac{965}{4574}a^{4}+\frac{1098}{2287}a^{3}-\frac{239}{2287}a^{2}-\frac{654}{2287}a+\frac{109}{2287}$, $\frac{1}{100628}a^{14}+\frac{3}{100628}a^{13}-\frac{2}{25157}a^{12}+\frac{9057}{100628}a^{11}+\frac{11481}{100628}a^{10}+\frac{621}{25157}a^{9}+\frac{13223}{100628}a^{8}+\frac{19731}{100628}a^{7}-\frac{2417}{25157}a^{6}+\frac{25501}{100628}a^{5}+\frac{40977}{100628}a^{4}+\frac{2241}{25157}a^{3}-\frac{14585}{50314}a^{2}+\frac{10959}{25157}a-\frac{9118}{25157}$, $\frac{1}{100628}a^{15}+\frac{5}{100628}a^{13}-\frac{5}{100628}a^{12}+\frac{11625}{50314}a^{11}+\frac{19895}{100628}a^{10}+\frac{4671}{100628}a^{9}-\frac{920}{25157}a^{8}-\frac{47983}{100628}a^{7}-\frac{403}{9148}a^{6}+\frac{14159}{50314}a^{5}-\frac{28497}{100628}a^{4}-\frac{22993}{50314}a^{3}+\frac{4671}{25157}a^{2}+\frac{11520}{25157}a+\frac{6542}{25157}$, $\frac{1}{40\cdots 64}a^{16}-\frac{56\cdots 21}{50\cdots 33}a^{15}+\frac{18\cdots 51}{40\cdots 64}a^{14}-\frac{40\cdots 87}{40\cdots 64}a^{13}+\frac{21\cdots 46}{50\cdots 33}a^{12}-\frac{13\cdots 79}{40\cdots 64}a^{11}+\frac{91\cdots 93}{40\cdots 64}a^{10}-\frac{15\cdots 71}{20\cdots 32}a^{9}+\frac{90\cdots 41}{36\cdots 24}a^{8}-\frac{14\cdots 55}{40\cdots 64}a^{7}-\frac{27\cdots 65}{10\cdots 66}a^{6}+\frac{62\cdots 69}{40\cdots 64}a^{5}-\frac{15\cdots 73}{10\cdots 66}a^{4}+\frac{17\cdots 47}{20\cdots 32}a^{3}+\frac{23\cdots 82}{50\cdots 33}a^{2}+\frac{42\cdots 05}{10\cdots 66}a-\frac{68\cdots 99}{50\cdots 33}$, $\frac{1}{12\cdots 52}a^{17}+\frac{81\cdots 23}{12\cdots 52}a^{16}+\frac{45\cdots 67}{12\cdots 52}a^{15}+\frac{55\cdots 79}{18\cdots 14}a^{14}+\frac{11\cdots 89}{12\cdots 52}a^{13}-\frac{20\cdots 39}{12\cdots 52}a^{12}+\frac{58\cdots 61}{25\cdots 84}a^{11}-\frac{93\cdots 81}{12\cdots 52}a^{10}-\frac{17\cdots 67}{12\cdots 52}a^{9}-\frac{64\cdots 13}{15\cdots 19}a^{8}-\frac{59\cdots 51}{12\cdots 52}a^{7}+\frac{57\cdots 17}{12\cdots 52}a^{6}+\frac{47\cdots 39}{11\cdots 32}a^{5}+\frac{12\cdots 97}{13\cdots 29}a^{4}+\frac{18\cdots 71}{55\cdots 16}a^{3}-\frac{31\cdots 04}{15\cdots 19}a^{2}-\frac{27\cdots 55}{27\cdots 58}a+\frac{92\cdots 15}{15\cdots 19}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -\frac{16964713181417673998820510650069695139406267}{3890106218790910040164489840002112331633252930438231498131196} a^{17} + \frac{47486786130169924345766533496866998897134895}{7780212437581820080328979680004224663266505860876462996262392} a^{16} - \frac{1223895079236207773232208583923504287129468675}{1945053109395455020082244920001056165816626465219115749065598} a^{15} - \frac{5592928327592118609232550362499373793700757}{46588098428633653175622632814396554869859316532194389199176} a^{14} - \frac{697105900080186791258298859868645405394505611969}{7780212437581820080328979680004224663266505860876462996262392} a^{13} - \frac{407192495527117061518394812126714069968494854443}{88411504972520682731011132727320734809846657509959806775709} a^{12} - \frac{23350267054317397014234542091621675328133792241567}{707292039780165461848089061818565878478773260079678454205672} a^{11} - \frac{2031367481739002141562691744740583605448831437345405}{7780212437581820080328979680004224663266505860876462996262392} a^{10} + \frac{8231224539439016356049204153203408445352574066565365}{3890106218790910040164489840002112331633252930438231498131196} a^{9} - \frac{6598828580735240299659706678070227135232667310935207}{7780212437581820080328979680004224663266505860876462996262392} a^{8} - \frac{4212982142506620026142836806176226744476312367412705409}{7780212437581820080328979680004224663266505860876462996262392} a^{7} - \frac{1132560936617963282707347968327544278017118770972712253}{176823009945041365462022265454641469619693315019919613551418} a^{6} - \frac{493240715993382851502637786912116496920011303082035211939}{7780212437581820080328979680004224663266505860876462996262392} a^{5} - \frac{1025158687112080948259318030981659082084647275227681118699}{1945053109395455020082244920001056165816626465219115749065598} a^{4} + \frac{12331176929613578372067751589474395504424180006951198117097}{3890106218790910040164489840002112331633252930438231498131196} a^{3} + \frac{88015590263834729667637220013043548786299592949516044781239}{1945053109395455020082244920001056165816626465219115749065598} a^{2} - \frac{911857170294343024435477180256801714504849827968211077514443}{1945053109395455020082244920001056165816626465219115749065598} a + \frac{341073261888530943961829926525727189500893564862765099030776}{88411504972520682731011132727320734809846657509959806775709} \)
(order $6$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot R \cdot h}{6\cdot\sqrt{113761460893702510484735982000599907732061184340694743130306972736028672}}\cr\mathstrut & \text{
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1270979667.1 x3, 3.1.1481976.3, 6.0.6588758593728.2, 6.0.4846167941782292667.1, 9.1.194731833464812587366907938019256832.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | 6.2.5674591274422324904667648.2 |
| Degree 9 sibling: | 9.1.194731833464812587366907938019256832.1 |
| Degree 12 sibling: | deg 12 |
| Degree 18 siblings: | 18.0.44402766688238530812346229902570152786470217145543488433324722627805452435456.2, deg 18 |
| Minimal sibling: | 6.2.5674591274422324904667648.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{3}$ | ${\href{/padicField/7.3.0.1}{3} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{9}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{3}$ | ${\href{/padicField/19.3.0.1}{3} }^{6}$ | ${\href{/padicField/23.6.0.1}{6} }^{3}$ | ${\href{/padicField/29.2.0.1}{2} }^{9}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{3}$ | ${\href{/padicField/53.6.0.1}{6} }^{3}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(3\)
| 3.1.18.39c2.19 | $x^{18} + 6 x^{12} + 18 x^{4} + 12$ | $18$ | $1$ | $39$ | not computed | not computed |
|
\(2287\)
| Deg $3$ | $3$ | $1$ | $2$ | |||
| Deg $3$ | $3$ | $1$ | $2$ | ||||
| Deg $6$ | $6$ | $1$ | $5$ | ||||
| Deg $6$ | $6$ | $1$ | $5$ |