Normalized defining polynomial
\( x^{18} - 8 x^{17} - 206 x^{16} - 6 x^{15} + 17550 x^{14} + 124802 x^{13} + 359127 x^{12} + 659382 x^{11} + 4974933 x^{10} + 36876810 x^{9} + 180850253 x^{8} + 695406524 x^{7} + 2546248545 x^{6} + 7978959520 x^{5} + 22847752382 x^{4} + 51046721698 x^{3} + 110400751965 x^{2} + 153363319298 x + 222285198247 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1132586549659813618524246198887307765542862584807424=-\,2^{33}\cdot 3^{9}\cdot 7^{14}\cdot 61^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $686.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{11} + \frac{1}{3} a^{10} - \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a$, $\frac{1}{6} a^{14} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6}$, $\frac{1}{36} a^{15} - \frac{1}{36} a^{14} - \frac{1}{36} a^{13} + \frac{1}{18} a^{12} + \frac{1}{36} a^{11} + \frac{1}{18} a^{10} + \frac{11}{36} a^{9} - \frac{5}{18} a^{8} + \frac{13}{36} a^{7} + \frac{1}{6} a^{6} - \frac{7}{36} a^{5} - \frac{1}{6} a^{4} - \frac{11}{36} a^{3} + \frac{1}{6} a^{2} + \frac{5}{18} a - \frac{5}{36}$, $\frac{1}{26058751102476} a^{16} - \frac{29571792130}{6514687775619} a^{15} - \frac{336540483724}{6514687775619} a^{14} + \frac{7812043643}{26058751102476} a^{13} - \frac{989130285575}{26058751102476} a^{12} - \frac{2302905155251}{26058751102476} a^{11} + \frac{10324248717407}{26058751102476} a^{10} + \frac{8018442729971}{26058751102476} a^{9} + \frac{2897299344949}{26058751102476} a^{8} + \frac{1067105919295}{8686250367492} a^{7} - \frac{2069464460551}{26058751102476} a^{6} + \frac{2828834616059}{8686250367492} a^{5} + \frac{10285297010905}{26058751102476} a^{4} - \frac{389838671009}{8686250367492} a^{3} - \frac{689032147393}{13029375551238} a^{2} - \frac{10013525684561}{26058751102476} a - \frac{3241270470851}{8686250367492}$, $\frac{1}{195394640272531013594175671509232040611953920286497990181619103036211380036} a^{17} + \frac{1733250782734489261856878949680161735149733390573669675504553}{195394640272531013594175671509232040611953920286497990181619103036211380036} a^{16} - \frac{488929413211733268141797119955545777050982642038766995264785389728788909}{195394640272531013594175671509232040611953920286497990181619103036211380036} a^{15} - \frac{1994102894598549411644597283737389556149055800060259189236672361112362215}{48848660068132753398543917877308010152988480071624497545404775759052845009} a^{14} - \frac{15133325169183345858993542714024162986643861852996210856289523065788164009}{195394640272531013594175671509232040611953920286497990181619103036211380036} a^{13} + \frac{727514777450099562679888223267317036126033903101039642005382501111914353}{32565773378755168932362611918205340101992320047749665030269850506035230006} a^{12} - \frac{53380843332339329432930212159489721900238529773606539934857792497645476047}{195394640272531013594175671509232040611953920286497990181619103036211380036} a^{11} + \frac{6366952043579916272659269489571189386131946278951950902139611678504064723}{97697320136265506797087835754616020305976960143248995090809551518105690018} a^{10} + \frac{64935603512395156858678917127512814627724550482377147401364924372462776571}{195394640272531013594175671509232040611953920286497990181619103036211380036} a^{9} + \frac{48426418554147249336268919781726052974671837059334303471353436753618729669}{97697320136265506797087835754616020305976960143248995090809551518105690018} a^{8} - \frac{19094385269560180267562909184874915705662436829813306982013050704182875187}{65131546757510337864725223836410680203984640095499330060539701012070460012} a^{7} - \frac{7279462441988404457940555068618420888508590899413257040403733198253640579}{97697320136265506797087835754616020305976960143248995090809551518105690018} a^{6} + \frac{31840786262407726260055721182272124332498240291494586908904199076772458365}{65131546757510337864725223836410680203984640095499330060539701012070460012} a^{5} + \frac{190422412866001199057275199020388839664701344485703054864357690056011465}{948517671225878706767843065578796313650261748963582476609801471049569806} a^{4} - \frac{10057518300572647565942387891514862408876118914173433586386376092342671721}{48848660068132753398543917877308010152988480071624497545404775759052845009} a^{3} + \frac{1118020666255066256280148967251403995677674904795985279332161654257498481}{21710515585836779288241741278803560067994880031833110020179900337356820004} a^{2} - \frac{7509261910474412391130668484125651363445999235409045172356253139042974687}{32565773378755168932362611918205340101992320047749665030269850506035230006} a - \frac{185333262362118251764558668806010884598918916136773024696638520820410463}{564724393851245704029409455228994337028768555741323671045141916289628266}$
Class group and class number
$C_{6}\times C_{18}\times C_{108}\times C_{137484}$, which has order $1603613376$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1363491204.97286 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 3.3.1708.1, 3.3.182329.2, 6.0.10082064384.5, 6.0.459563179267584.2, 9.9.165643767257935513792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.12.24.307 | $x^{12} + 28 x^{11} - 2 x^{10} + 16 x^{9} + 26 x^{8} + 8 x^{7} + 20 x^{6} - 24 x^{5} - 8 x^{4} + 32 x^{3} + 32 x^{2} + 32 x + 24$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $61$ | 61.6.4.3 | $x^{6} + 183 x^{3} + 14884$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 61.12.10.2 | $x^{12} + 183 x^{6} + 14884$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |