Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} - 13 x^{15} + 42 x^{13} + 58 x^{12} - 103 x^{11} + 445 x^{10} + 1430 x^{9} + 1931 x^{8} + 1524 x^{7} + 1954 x^{6} + 3082 x^{5} + 4607 x^{4} + 4818 x^{3} + 3341 x^{2} + 1625 x + 403 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-111957082389109746826171875=-\,3^{9}\cdot 5^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{10} - \frac{1}{3} a^{9} - \frac{1}{2} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{186} a^{14} + \frac{1}{186} a^{13} - \frac{5}{186} a^{12} - \frac{5}{186} a^{11} + \frac{35}{186} a^{10} - \frac{23}{93} a^{9} - \frac{15}{62} a^{8} + \frac{4}{93} a^{7} + \frac{1}{186} a^{6} + \frac{4}{93} a^{5} - \frac{17}{186} a^{4} - \frac{1}{3} a^{3} + \frac{11}{93} a^{2} + \frac{13}{31} a - \frac{1}{2}$, $\frac{1}{2418} a^{15} + \frac{2}{1209} a^{14} + \frac{10}{403} a^{13} + \frac{4}{93} a^{12} - \frac{69}{403} a^{11} + \frac{123}{806} a^{10} - \frac{185}{806} a^{9} - \frac{437}{2418} a^{8} - \frac{37}{2418} a^{7} + \frac{13}{62} a^{6} - \frac{551}{2418} a^{5} - \frac{113}{2418} a^{4} - \frac{175}{1209} a^{3} - \frac{4}{93} a^{2} + \frac{49}{186} a - \frac{1}{6}$, $\frac{1}{5196282} a^{16} - \frac{181}{2598141} a^{15} - \frac{35}{28551} a^{14} + \frac{368521}{5196282} a^{13} + \frac{19353}{866047} a^{12} + \frac{351217}{1732094} a^{11} - \frac{704603}{2598141} a^{10} + \frac{45017}{247442} a^{9} + \frac{742790}{2598141} a^{8} - \frac{653091}{1732094} a^{7} - \frac{272639}{866047} a^{6} - \frac{184715}{742326} a^{5} + \frac{1545199}{5196282} a^{4} - \frac{1135733}{2598141} a^{3} - \frac{87142}{199857} a^{2} - \frac{4108}{9517} a + \frac{1271}{6447}$, $\frac{1}{56733801766846386} a^{17} - \frac{168877712}{9455633627807731} a^{16} - \frac{1208343717671}{28366900883423193} a^{15} - \frac{22958827703606}{28366900883423193} a^{14} - \frac{126965500884735}{18911267255615462} a^{13} + \frac{8160645908468}{2182069298724861} a^{12} - \frac{5657382317877791}{56733801766846386} a^{11} + \frac{1870081641978343}{28366900883423193} a^{10} - \frac{13943640772139254}{28366900883423193} a^{9} + \frac{2935404783541590}{9455633627807731} a^{8} - \frac{4344474378171374}{28366900883423193} a^{7} + \frac{11840292811443374}{28366900883423193} a^{6} + \frac{8828556975933083}{18911267255615462} a^{5} - \frac{86261618448619}{610040879213402} a^{4} + \frac{4344276848044710}{9455633627807731} a^{3} - \frac{323586194835266}{2182069298724861} a^{2} - \frac{225939109655828}{2182069298724861} a - \frac{41982320484565}{140778664433862}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1783988040}{176552712583} a^{17} + \frac{17500086610}{529658137749} a^{16} - \frac{30916009571}{529658137749} a^{15} + \frac{76725576665}{529658137749} a^{14} - \frac{20272690406}{529658137749} a^{13} - \frac{16999777484}{40742933673} a^{12} - \frac{264023284202}{529658137749} a^{11} + \frac{221723026506}{176552712583} a^{10} - \frac{2529834181853}{529658137749} a^{9} - \frac{2331961138812}{176552712583} a^{8} - \frac{8347298363431}{529658137749} a^{7} - \frac{1568729645500}{176552712583} a^{6} - \frac{2588681383955}{176552712583} a^{5} - \frac{440136406252}{17085746379} a^{4} - \frac{20545061088497}{529658137749} a^{3} - \frac{1349018629990}{40742933673} a^{2} - \frac{769741752119}{40742933673} a - \frac{7273288033}{1314288183} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 613727.005399 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.12675.1 x3, 3.3.169.1, 6.0.481966875.1, 6.0.2851875.1 x2, 6.0.771147.1, 9.3.2036310046875.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.2851875.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |