# Properties

 Label 18.0.11159062772...1168.1 Degree $18$ Signature $[0, 9]$ Discriminant $-\,2^{12}\cdot 3^{9}\cdot 7^{12}$ Root discriminant $10.06$ Ramified primes $2, 3, 7$ Class number $1$ Class group Trivial Galois group $S_3 \times C_3$ (as 18T3)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, 14, -31, 64, -100, 146, -176, 202, -205, 202, -176, 146, -100, 64, -31, 14, -4, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 4*x^17 + 14*x^16 - 31*x^15 + 64*x^14 - 100*x^13 + 146*x^12 - 176*x^11 + 202*x^10 - 205*x^9 + 202*x^8 - 176*x^7 + 146*x^6 - 100*x^5 + 64*x^4 - 31*x^3 + 14*x^2 - 4*x + 1)

gp: K = bnfinit(x^18 - 4*x^17 + 14*x^16 - 31*x^15 + 64*x^14 - 100*x^13 + 146*x^12 - 176*x^11 + 202*x^10 - 205*x^9 + 202*x^8 - 176*x^7 + 146*x^6 - 100*x^5 + 64*x^4 - 31*x^3 + 14*x^2 - 4*x + 1, 1)

## Normalizeddefining polynomial

$$x^{18} - 4 x^{17} + 14 x^{16} - 31 x^{15} + 64 x^{14} - 100 x^{13} + 146 x^{12} - 176 x^{11} + 202 x^{10} - 205 x^{9} + 202 x^{8} - 176 x^{7} + 146 x^{6} - 100 x^{5} + 64 x^{4} - 31 x^{3} + 14 x^{2} - 4 x + 1$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

## Invariants

 Degree: $18$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[0, 9]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$-1115906277282951168=-\,2^{12}\cdot 3^{9}\cdot 7^{12}$$ magma: Discriminant(Integers(K));  sage: K.disc()  gp: K.disc Root discriminant: $10.06$ magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 3, 7$ magma: PrimeDivisors(Discriminant(Integers(K)));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ $|\Gal(K/\Q)|$: $18$ This field is Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} + \frac{4}{9} a^{13} + \frac{1}{3} a^{12} + \frac{1}{9} a^{11} + \frac{4}{9} a^{10} - \frac{4}{9} a^{9} - \frac{2}{9} a^{8} - \frac{4}{9} a^{7} + \frac{4}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{369} a^{17} - \frac{5}{369} a^{16} + \frac{20}{123} a^{15} - \frac{50}{369} a^{14} - \frac{44}{123} a^{13} - \frac{173}{369} a^{12} - \frac{50}{369} a^{11} + \frac{161}{369} a^{10} + \frac{2}{9} a^{9} - \frac{2}{9} a^{8} + \frac{79}{369} a^{7} - \frac{50}{369} a^{6} - \frac{44}{123} a^{5} + \frac{73}{369} a^{4} - \frac{1}{41} a^{3} + \frac{19}{369} a^{2} - \frac{128}{369} a + \frac{55}{123}$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

## Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $8$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$\frac{796}{369} a^{17} - \frac{616}{123} a^{16} + \frac{6104}{369} a^{15} - \frac{8066}{369} a^{14} + \frac{16616}{369} a^{13} - \frac{12617}{369} a^{12} + \frac{2074}{41} a^{11} - \frac{7226}{369} a^{10} + \frac{256}{9} a^{9} - \frac{4}{9} a^{8} + \frac{1466}{369} a^{7} + \frac{3598}{123} a^{6} - \frac{6754}{369} a^{5} + \frac{14566}{369} a^{4} - \frac{5770}{369} a^{3} + \frac{7006}{369} a^{2} - \frac{616}{123} a + \frac{1370}{369}$$ (order $6$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental units: Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: $$64.801283476$$ magma: Regulator(K);  sage: K.regulator()  gp: K.reg

## Galois group

$C_3\times S_3$ (as 18T3):

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A solvable group of order 18 The 9 conjugacy class representatives for $S_3 \times C_3$ Character table for $S_3 \times C_3$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling fields

 Degree 6 sibling: 6.0.21168.1 Degree 9 sibling: data not computed

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3} 3.6.3.2x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3} 77.9.6.1x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$