Normalized defining polynomial
\( x^{18} - 6 x^{17} + 39 x^{16} - 156 x^{15} + 741 x^{14} - 2964 x^{13} + 12243 x^{12} - 42762 x^{11} + 134040 x^{10} - 356156 x^{9} + 818277 x^{8} - 1613178 x^{7} + 2750907 x^{6} - 3956256 x^{5} + 4799817 x^{4} - 4605120 x^{3} + 3278853 x^{2} - 1452222 x + 298719 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1115141259295002959559738261504=-\,2^{27}\cdot 3^{30}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{7}$, $\frac{1}{731134803285960499375029083468347854622779946971} a^{17} + \frac{2665694354884892906447196621172772002357531053}{243711601095320166458343027822782618207593315657} a^{16} - \frac{13006515382944505595641381471323925014600816440}{243711601095320166458343027822782618207593315657} a^{15} - \frac{66439694329728224585861538565206191260627993484}{731134803285960499375029083468347854622779946971} a^{14} + \frac{18736657388446287037579966333026153538991859122}{243711601095320166458343027822782618207593315657} a^{13} + \frac{36315582327238669239627036555034791358256075063}{243711601095320166458343027822782618207593315657} a^{12} + \frac{46912227185478099894054130967579513685075354229}{731134803285960499375029083468347854622779946971} a^{11} + \frac{83261021312459892159796847014818382706818832600}{731134803285960499375029083468347854622779946971} a^{10} + \frac{101152195560193437890083020041192026481353869523}{731134803285960499375029083468347854622779946971} a^{9} + \frac{110182585363330230337969795883590561967822313878}{731134803285960499375029083468347854622779946971} a^{8} - \frac{161063555185371170462846056150342166233606259317}{731134803285960499375029083468347854622779946971} a^{7} + \frac{177355362676560212053097292817347829900100557636}{731134803285960499375029083468347854622779946971} a^{6} + \frac{190523164823976620239262720023311108974069195962}{731134803285960499375029083468347854622779946971} a^{5} + \frac{12337538180409418324487964076581594268495668649}{243711601095320166458343027822782618207593315657} a^{4} + \frac{13145663449191389004616333027274840125151564225}{243711601095320166458343027822782618207593315657} a^{3} + \frac{68285443533273916140502840297078869245740955263}{243711601095320166458343027822782618207593315657} a^{2} - \frac{115637149157108997929297806494767589845462477721}{243711601095320166458343027822782618207593315657} a + \frac{34472320281371673749254233008013338512512873937}{243711601095320166458343027822782618207593315657}$
Class group and class number
$C_{2}\times C_{6}\times C_{12}$, which has order $144$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 476246.2180069754 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), 3.1.216.1, \(\Q(\zeta_{9})^+\), 6.0.128024064.1, 6.0.1152216576.2, 9.3.7346640384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $3$ | 3.9.15.13 | $x^{9} + 3 x^{7} + 6 x^{6} + 6 x^{3} + 3$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ |
| 3.9.15.13 | $x^{9} + 3 x^{7} + 6 x^{6} + 6 x^{3} + 3$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |