Normalized defining polynomial
\( x^{18} + 6 x^{16} - 10 x^{15} + 45 x^{14} - 48 x^{13} + 114 x^{12} - 144 x^{11} + 504 x^{10} + 20 x^{9} - 1836 x^{8} + 2298 x^{7} - 296 x^{6} - 990 x^{5} + 3819 x^{4} - 6540 x^{3} + 7002 x^{2} - 5850 x + 2481 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-110625655867925924191778703=-\,3^{27}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{18} a^{12} + \frac{2}{9} a^{9} - \frac{1}{6} a^{7} - \frac{1}{9} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6}$, $\frac{1}{18} a^{13} + \frac{2}{9} a^{10} - \frac{1}{6} a^{8} - \frac{1}{9} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a$, $\frac{1}{36} a^{14} + \frac{1}{9} a^{11} + \frac{1}{6} a^{9} - \frac{1}{18} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{144} a^{15} - \frac{1}{144} a^{14} - \frac{1}{72} a^{12} + \frac{7}{72} a^{11} + \frac{1}{6} a^{10} + \frac{11}{72} a^{9} - \frac{1}{9} a^{8} + \frac{5}{24} a^{7} + \frac{5}{12} a^{6} + \frac{5}{24} a^{5} - \frac{1}{8} a^{4} + \frac{5}{12} a^{3} + \frac{11}{24} a^{2} - \frac{5}{16} a - \frac{1}{16}$, $\frac{1}{1192032} a^{16} + \frac{115}{66224} a^{15} - \frac{2413}{397344} a^{14} + \frac{1063}{66224} a^{13} + \frac{2023}{74502} a^{12} + \frac{30803}{198672} a^{11} - \frac{3745}{66224} a^{10} - \frac{42391}{596016} a^{9} + \frac{6521}{198672} a^{8} + \frac{96643}{596016} a^{7} - \frac{246271}{596016} a^{6} - \frac{1610}{12417} a^{5} + \frac{45017}{198672} a^{4} + \frac{59377}{198672} a^{3} + \frac{14001}{132448} a^{2} - \frac{38633}{99336} a - \frac{196189}{397344}$, $\frac{1}{32886601509225742795584} a^{17} + \frac{12643126478771911}{32886601509225742795584} a^{16} - \frac{83456108964488147453}{32886601509225742795584} a^{15} - \frac{99933643364687677295}{10962200503075247598528} a^{14} + \frac{38880212440037414311}{1827033417179207933088} a^{13} + \frac{63419056751627225255}{5481100251537623799264} a^{12} - \frac{10127625350512193281}{456758354294801983272} a^{11} - \frac{149635297152451858135}{685137531442202974908} a^{10} - \frac{94350134210853799667}{685137531442202974908} a^{9} + \frac{1565233026858141372215}{8221650377306435698896} a^{8} - \frac{184663845286514034479}{1027706297163304462362} a^{7} + \frac{7822738751284078870657}{16443300754612871397792} a^{6} + \frac{960480733089545634133}{5481100251537623799264} a^{5} + \frac{82687240670463642863}{2740550125768811899632} a^{4} - \frac{1753165634854939890617}{3654066834358415866176} a^{3} - \frac{21462679705077643427}{576957921214486715712} a^{2} + \frac{3637530214332587249395}{10962200503075247598528} a + \frac{3132175084056518355511}{10962200503075247598528}$
Class group and class number
$C_{6}$, which has order $6$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 184881.082486 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 3.1.87.1 x3, \(\Q(\zeta_{9})^+\), 6.0.658503.1, 6.0.480048687.2 x2, 6.0.480048687.1, 9.3.38883943647.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.480048687.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $29$ | 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |