Normalized defining polynomial
\( x^{18} - x^{17} + 5 x^{16} - 10 x^{15} + 31 x^{14} - 76 x^{13} + 210 x^{12} + 366 x^{11} + 550 x^{10} + 704 x^{9} + 1130 x^{8} + 1136 x^{7} + 2680 x^{6} + 734 x^{5} + 201 x^{4} + 55 x^{3} + 15 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-110609092182866440454328583=-\,7^{15}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(91=7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{91}(1,·)$, $\chi_{91}(66,·)$, $\chi_{91}(3,·)$, $\chi_{91}(68,·)$, $\chi_{91}(9,·)$, $\chi_{91}(74,·)$, $\chi_{91}(79,·)$, $\chi_{91}(16,·)$, $\chi_{91}(81,·)$, $\chi_{91}(22,·)$, $\chi_{91}(87,·)$, $\chi_{91}(27,·)$, $\chi_{91}(29,·)$, $\chi_{91}(40,·)$, $\chi_{91}(48,·)$, $\chi_{91}(53,·)$, $\chi_{91}(55,·)$, $\chi_{91}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{154646} a^{13} - \frac{30525}{154646} a^{12} + \frac{33475}{154646} a^{11} - \frac{465}{77323} a^{10} + \frac{10709}{154646} a^{9} + \frac{29419}{154646} a^{8} + \frac{14347}{154646} a^{7} - \frac{69219}{154646} a^{6} - \frac{18323}{154646} a^{5} - \frac{45007}{154646} a^{4} + \frac{20467}{77323} a^{3} - \frac{47993}{154646} a^{2} + \frac{24767}{154646} a + \frac{51619}{154646}$, $\frac{1}{309292} a^{14} + \frac{35065}{154646} a^{7} - \frac{18119}{309292}$, $\frac{1}{309292} a^{15} + \frac{35065}{154646} a^{8} - \frac{18119}{309292} a$, $\frac{1}{309292} a^{16} + \frac{35065}{154646} a^{9} - \frac{18119}{309292} a^{2}$, $\frac{1}{309292} a^{17} + \frac{35065}{154646} a^{10} - \frac{18119}{309292} a^{3}$
Class group and class number
$C_{13}$, which has order $13$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6345}{309292} a^{17} - \frac{31725}{309292} a^{16} + \frac{31725}{154646} a^{15} - \frac{196695}{309292} a^{14} + \frac{120555}{77323} a^{13} - \frac{666225}{154646} a^{12} + \frac{864485}{77323} a^{11} - \frac{1744875}{154646} a^{10} - \frac{1116720}{77323} a^{9} - \frac{3584925}{154646} a^{8} - \frac{1801980}{77323} a^{7} - \frac{4251150}{77323} a^{6} - \frac{2328615}{154646} a^{5} - \frac{14059438}{77323} a^{4} - \frac{348975}{309292} a^{3} - \frac{95175}{309292} a^{2} - \frac{6345}{77323} a - \frac{6345}{309292} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.169.1, 3.3.8281.2, \(\Q(\zeta_{7})^+\), 3.3.8281.1, 6.0.9796423.1, 6.0.480024727.2, \(\Q(\zeta_{7})\), 6.0.480024727.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |