Normalized defining polynomial
\( x^{18} - 9 x^{17} + 126 x^{16} - 804 x^{15} + 6660 x^{14} - 33264 x^{13} + 204504 x^{12} - 828522 x^{11} + 4088970 x^{10} - 13554338 x^{9} + 55596501 x^{8} - 148974714 x^{7} + 515548185 x^{6} - 1074264939 x^{5} + 3146390811 x^{4} - 4653356364 x^{3} + 11461225869 x^{2} - 9291550797 x + 18936946911 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1102087125658583523206929858282481727=-\,3^{44}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1269=3^{3}\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1269}(1,·)$, $\chi_{1269}(706,·)$, $\chi_{1269}(328,·)$, $\chi_{1269}(1033,·)$, $\chi_{1269}(142,·)$, $\chi_{1269}(847,·)$, $\chi_{1269}(469,·)$, $\chi_{1269}(1174,·)$, $\chi_{1269}(283,·)$, $\chi_{1269}(988,·)$, $\chi_{1269}(610,·)$, $\chi_{1269}(424,·)$, $\chi_{1269}(1129,·)$, $\chi_{1269}(46,·)$, $\chi_{1269}(751,·)$, $\chi_{1269}(565,·)$, $\chi_{1269}(187,·)$, $\chi_{1269}(892,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{53} a^{16} - \frac{15}{53} a^{15} + \frac{23}{53} a^{14} - \frac{8}{53} a^{13} - \frac{10}{53} a^{12} - \frac{19}{53} a^{11} + \frac{7}{53} a^{10} - \frac{5}{53} a^{9} + \frac{24}{53} a^{8} + \frac{14}{53} a^{7} - \frac{21}{53} a^{6} - \frac{14}{53} a^{5} + \frac{16}{53} a^{4} + \frac{20}{53} a^{3} - \frac{9}{53} a^{2} - \frac{26}{53} a + \frac{22}{53}$, $\frac{1}{697934848279328471749668646932198230318986545300020191906013} a^{17} - \frac{5457332218129822488539181516716049617705267835434182481719}{697934848279328471749668646932198230318986545300020191906013} a^{16} - \frac{190311352464839950599245715746210617791006058194306776834832}{697934848279328471749668646932198230318986545300020191906013} a^{15} + \frac{316879169156388937235295520948517789011765613457926940566910}{697934848279328471749668646932198230318986545300020191906013} a^{14} + \frac{19351536209519041971217392652022524910620199179366816783973}{697934848279328471749668646932198230318986545300020191906013} a^{13} + \frac{110326343249149136804361858469474002996701799885569857713194}{697934848279328471749668646932198230318986545300020191906013} a^{12} - \frac{110323279821876293216110070542177977037535703680869359103689}{697934848279328471749668646932198230318986545300020191906013} a^{11} + \frac{200931379479515504024443733443597544107900572111849359207940}{697934848279328471749668646932198230318986545300020191906013} a^{10} - \frac{330950881159654508308787366057583313945878087097707948464295}{697934848279328471749668646932198230318986545300020191906013} a^{9} + \frac{229285070811000180626437475515781441965040474922662064380360}{697934848279328471749668646932198230318986545300020191906013} a^{8} - \frac{169826462651469322537110510309688517425938916647212309118807}{697934848279328471749668646932198230318986545300020191906013} a^{7} + \frac{323431629310582765747651084651716981568993740394472938710920}{697934848279328471749668646932198230318986545300020191906013} a^{6} + \frac{268369835631758121546011363222891749046596736782720357592934}{697934848279328471749668646932198230318986545300020191906013} a^{5} - \frac{67644589571804460138155382906871615275352761927324030440390}{697934848279328471749668646932198230318986545300020191906013} a^{4} - \frac{78868688601510990022073821836683284287178688123645825594777}{697934848279328471749668646932198230318986545300020191906013} a^{3} + \frac{190140355951701254052341813322199312440847305826517668603147}{697934848279328471749668646932198230318986545300020191906013} a^{2} + \frac{297820919521503363105891167703977093248530240145948848508123}{697934848279328471749668646932198230318986545300020191906013} a - \frac{214697222850104216178074211059325576799270492342066097997899}{697934848279328471749668646932198230318986545300020191906013}$
Class group and class number
$C_{9}\times C_{139365}$, which has order $1254285$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), \(\Q(\zeta_{9})^+\), 6.0.681182703.2, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 47 | Data not computed | ||||||