Normalized defining polynomial
\( x^{18} + 3 x^{16} - 12 x^{15} + 6 x^{14} - 18 x^{13} + 75 x^{12} + 12 x^{11} + 42 x^{10} - 146 x^{9} - 81 x^{8} + 132 x^{7} + 93 x^{6} - 114 x^{5} - 144 x^{4} + 168 x^{3} + 96 x^{2} - 96 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10968475320188928000000=-\,2^{26}\cdot 3^{21}\cdot 5^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{18} a^{9} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{2}{9}$, $\frac{1}{18} a^{10} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{5}{18} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{18} a^{12} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{18} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{18} a^{13} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{108} a^{14} - \frac{1}{54} a^{13} + \frac{1}{108} a^{12} + \frac{1}{54} a^{11} + \frac{1}{54} a^{10} + \frac{1}{54} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{6} + \frac{11}{27} a^{5} - \frac{7}{108} a^{4} + \frac{11}{27} a^{3} + \frac{43}{108} a^{2} - \frac{5}{27} a + \frac{13}{27}$, $\frac{1}{648} a^{15} + \frac{1}{216} a^{13} + \frac{1}{162} a^{12} + \frac{1}{108} a^{11} - \frac{1}{108} a^{10} - \frac{5}{648} a^{9} - \frac{1}{36} a^{7} + \frac{13}{324} a^{6} + \frac{1}{24} a^{5} + \frac{23}{54} a^{4} - \frac{31}{648} a^{3} + \frac{17}{108} a^{2} - \frac{5}{27} a + \frac{31}{81}$, $\frac{1}{3888} a^{16} + \frac{1}{1944} a^{15} + \frac{1}{1296} a^{14} + \frac{5}{1944} a^{13} + \frac{7}{1944} a^{12} + \frac{7}{648} a^{11} - \frac{17}{3888} a^{10} - \frac{23}{1944} a^{9} + \frac{5}{216} a^{8} - \frac{59}{1944} a^{7} - \frac{29}{3888} a^{6} - \frac{89}{648} a^{5} - \frac{1531}{3888} a^{4} + \frac{97}{243} a^{3} - \frac{95}{324} a^{2} + \frac{109}{486} a - \frac{95}{243}$, $\frac{1}{2185056} a^{17} - \frac{31}{273132} a^{16} + \frac{811}{2185056} a^{15} - \frac{1391}{546264} a^{14} - \frac{8065}{1092528} a^{13} - \frac{12973}{1092528} a^{12} + \frac{54859}{2185056} a^{11} - \frac{12395}{546264} a^{10} + \frac{7529}{1092528} a^{9} + \frac{71635}{1092528} a^{8} + \frac{158207}{2185056} a^{7} + \frac{23951}{546264} a^{6} + \frac{80741}{2185056} a^{5} - \frac{27449}{1092528} a^{4} + \frac{35209}{273132} a^{3} - \frac{18133}{136566} a^{2} + \frac{15388}{68283} a + \frac{2563}{68283}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{527}{68283} a^{17} + \frac{3025}{1092528} a^{16} - \frac{10927}{546264} a^{15} + \frac{116503}{1092528} a^{14} - \frac{36979}{546264} a^{13} + \frac{73997}{546264} a^{12} - \frac{365083}{546264} a^{11} + \frac{76399}{1092528} a^{10} - \frac{78283}{546264} a^{9} + \frac{907951}{546264} a^{8} + \frac{307129}{546264} a^{7} - \frac{1499101}{1092528} a^{6} - \frac{736595}{546264} a^{5} + \frac{1194737}{1092528} a^{4} + \frac{215359}{136566} a^{3} - \frac{61522}{68283} a^{2} - \frac{84313}{68283} a + \frac{78263}{68283} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38983.74877017534 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 3.1.1080.1, 6.0.3499200.1, 6.0.34992.1, 9.1.60466176000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |