Normalized defining polynomial
\( x^{18} + 87 x^{16} - 8 x^{15} + 4077 x^{14} - 168 x^{13} + 130959 x^{12} + 10734 x^{11} + 3060519 x^{10} + 599534 x^{9} + 52558377 x^{8} + 13346178 x^{7} + 650424667 x^{6} + 161406414 x^{5} + 5488830594 x^{4} + 1059399976 x^{3} + 28151284764 x^{2} + 3006290520 x + 65914946488 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10867175634578347994343560692370767872=-\,2^{18}\cdot 3^{24}\cdot 7^{12}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3276=2^{2}\cdot 3^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3276}(1,·)$, $\chi_{3276}(2755,·)$, $\chi_{3276}(1093,·)$, $\chi_{3276}(2185,·)$, $\chi_{3276}(781,·)$, $\chi_{3276}(3067,·)$, $\chi_{3276}(1873,·)$, $\chi_{3276}(2965,·)$, $\chi_{3276}(415,·)$, $\chi_{3276}(1507,·)$, $\chi_{3276}(2599,·)$, $\chi_{3276}(625,·)$, $\chi_{3276}(883,·)$, $\chi_{3276}(1717,·)$, $\chi_{3276}(1975,·)$, $\chi_{3276}(2809,·)$, $\chi_{3276}(571,·)$, $\chi_{3276}(1663,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{144272} a^{16} + \frac{3741}{72136} a^{15} + \frac{2165}{144272} a^{14} + \frac{32951}{72136} a^{13} + \frac{10987}{144272} a^{12} + \frac{33753}{72136} a^{11} - \frac{39775}{144272} a^{10} + \frac{4091}{36068} a^{9} - \frac{57735}{144272} a^{8} + \frac{4196}{9017} a^{7} + \frac{18419}{144272} a^{6} + \frac{2972}{9017} a^{5} - \frac{37207}{144272} a^{4} + \frac{3245}{18034} a^{3} + \frac{15039}{36068} a^{2} + \frac{278}{9017} a + \frac{47}{508}$, $\frac{1}{2427762201790120067330684931747647813746001306650764335309189968} a^{17} - \frac{724404719201999705125171156967471905811541821386430878705}{1213881100895060033665342465873823906873000653325382167654594984} a^{16} - \frac{8149252634514033752485993850930927268330745888165225273942651}{2427762201790120067330684931747647813746001306650764335309189968} a^{15} - \frac{42228230905912358434773496348948643184959334782507801445999061}{1213881100895060033665342465873823906873000653325382167654594984} a^{14} - \frac{873730911039535686635918666066006925923889246152130828908945525}{2427762201790120067330684931747647813746001306650764335309189968} a^{13} + \frac{584988799450449933757009089049954679055208966958276336295768637}{1213881100895060033665342465873823906873000653325382167654594984} a^{12} - \frac{978598776061432967095492593221562152883277056292947873583629663}{2427762201790120067330684931747647813746001306650764335309189968} a^{11} + \frac{152471134515273184284435221106003822860306789913014051771220149}{606940550447530016832671232936911953436500326662691083827297492} a^{10} + \frac{938625934396594074689977767888424377911009118016457928920335697}{2427762201790120067330684931747647813746001306650764335309189968} a^{9} - \frac{15507508429524656622852916343348310338808201246654239805093261}{151735137611882504208167808234227988359125081665672770956824373} a^{8} + \frac{1152547755258532253112233636339117897933411866076980850151123139}{2427762201790120067330684931747647813746001306650764335309189968} a^{7} - \frac{121317706518196819861450301169669163428022279884537473173748435}{303470275223765008416335616468455976718250163331345541913648746} a^{6} + \frac{1109441135860367922169065491484227929446317640042063141464018377}{2427762201790120067330684931747647813746001306650764335309189968} a^{5} - \frac{36735834804969334331271398467896120259736234422641462286965176}{151735137611882504208167808234227988359125081665672770956824373} a^{4} + \frac{43461168766950904246171938442406456817232870710216161079051419}{606940550447530016832671232936911953436500326662691083827297492} a^{3} + \frac{44228810652336364580485187888329879363921038844944142678387723}{606940550447530016832671232936911953436500326662691083827297492} a^{2} + \frac{160409458944664516079326634911159549787133914453345607902389711}{606940550447530016832671232936911953436500326662691083827297492} a - \frac{718029862849216119138096464108135770348080086510374869108301}{4274229228503732512906135443217689812933100891990782280473926}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{18}\times C_{13338}$, which has order $1920672$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-13}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{7})^+\), 6.0.922529088.2, 6.0.2214992340288.7, 6.0.2214992340288.8, 6.0.337599808.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |