Properties

Label 18.0.10703880581...9375.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,5^{9}\cdot 19^{17}$
Root discriminant $36.07$
Ramified primes $5, 19$
Class number $152$ (GRH)
Class group $[152]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9349, -9330, 9330, -9045, 9045, -7791, 7791, -5283, 5283, -2566, 2566, -837, 837, -172, 172, -20, 20, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - x^17 + 20*x^16 - 20*x^15 + 172*x^14 - 172*x^13 + 837*x^12 - 837*x^11 + 2566*x^10 - 2566*x^9 + 5283*x^8 - 5283*x^7 + 7791*x^6 - 7791*x^5 + 9045*x^4 - 9045*x^3 + 9330*x^2 - 9330*x + 9349)
 
gp: K = bnfinit(x^18 - x^17 + 20*x^16 - 20*x^15 + 172*x^14 - 172*x^13 + 837*x^12 - 837*x^11 + 2566*x^10 - 2566*x^9 + 5283*x^8 - 5283*x^7 + 7791*x^6 - 7791*x^5 + 9045*x^4 - 9045*x^3 + 9330*x^2 - 9330*x + 9349, 1)
 

Normalized defining polynomial

\( x^{18} - x^{17} + 20 x^{16} - 20 x^{15} + 172 x^{14} - 172 x^{13} + 837 x^{12} - 837 x^{11} + 2566 x^{10} - 2566 x^{9} + 5283 x^{8} - 5283 x^{7} + 7791 x^{6} - 7791 x^{5} + 9045 x^{4} - 9045 x^{3} + 9330 x^{2} - 9330 x + 9349 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-10703880581610941769412109375=-\,5^{9}\cdot 19^{17}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(95=5\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{95}(1,·)$, $\chi_{95}(66,·)$, $\chi_{95}(69,·)$, $\chi_{95}(6,·)$, $\chi_{95}(11,·)$, $\chi_{95}(14,·)$, $\chi_{95}(79,·)$, $\chi_{95}(16,·)$, $\chi_{95}(81,·)$, $\chi_{95}(84,·)$, $\chi_{95}(89,·)$, $\chi_{95}(26,·)$, $\chi_{95}(29,·)$, $\chi_{95}(94,·)$, $\chi_{95}(34,·)$, $\chi_{95}(36,·)$, $\chi_{95}(59,·)$, $\chi_{95}(61,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4181} a^{10} + \frac{1597}{4181} a^{9} + \frac{10}{4181} a^{8} + \frac{1830}{4181} a^{7} + \frac{35}{4181} a^{6} + \frac{1309}{4181} a^{5} + \frac{50}{4181} a^{4} + \frac{1919}{4181} a^{3} + \frac{25}{4181} a^{2} + \frac{1830}{4181} a + \frac{2}{4181}$, $\frac{1}{4181} a^{11} + \frac{11}{4181} a^{9} - \frac{1597}{4181} a^{8} + \frac{44}{4181} a^{7} - \frac{233}{4181} a^{6} + \frac{77}{4181} a^{5} + \frac{1508}{4181} a^{4} + \frac{55}{4181} a^{3} - \frac{466}{4181} a^{2} + \frac{11}{4181} a + \frac{987}{4181}$, $\frac{1}{4181} a^{12} + \frac{1741}{4181} a^{9} - \frac{66}{4181} a^{8} + \frac{542}{4181} a^{7} - \frac{308}{4181} a^{6} - \frac{348}{4181} a^{5} - \frac{495}{4181} a^{4} - \frac{670}{4181} a^{3} - \frac{264}{4181} a^{2} + \frac{1762}{4181} a - \frac{22}{4181}$, $\frac{1}{4181} a^{13} - \frac{78}{4181} a^{9} - \frac{144}{4181} a^{8} - \frac{416}{4181} a^{7} + \frac{1432}{4181} a^{6} - \frac{819}{4181} a^{5} + \frac{81}{4181} a^{4} - \frac{624}{4181} a^{3} + \frac{47}{4181} a^{2} - \frac{130}{4181} a + \frac{699}{4181}$, $\frac{1}{4181} a^{14} - \frac{1008}{4181} a^{9} + \frac{364}{4181} a^{8} + \frac{2018}{4181} a^{7} + \frac{1911}{4181} a^{6} + \frac{1839}{4181} a^{5} - \frac{905}{4181} a^{4} - \frac{787}{4181} a^{3} + \frac{1820}{4181} a^{2} + \frac{1285}{4181} a + \frac{156}{4181}$, $\frac{1}{4181} a^{15} + \frac{455}{4181} a^{9} - \frac{445}{4181} a^{8} - \frac{1451}{4181} a^{7} - \frac{510}{4181} a^{6} + \frac{1552}{4181} a^{5} - \frac{559}{4181} a^{4} + \frac{369}{4181} a^{3} + \frac{1399}{4181} a^{2} + \frac{975}{4181} a + \frac{2016}{4181}$, $\frac{1}{4181} a^{16} + \frac{414}{4181} a^{9} - \frac{1820}{4181} a^{8} - \frac{1141}{4181} a^{7} - \frac{1830}{4181} a^{6} + \frac{1729}{4181} a^{5} - \frac{1476}{4181} a^{4} + \frac{2083}{4181} a^{3} - \frac{2038}{4181} a^{2} + \frac{1385}{4181} a - \frac{910}{4181}$, $\frac{1}{4181} a^{17} + \frac{1801}{4181} a^{9} - \frac{1100}{4181} a^{8} + \frac{1492}{4181} a^{7} - \frac{218}{4181} a^{6} + \frac{128}{4181} a^{5} - \frac{1893}{4181} a^{4} + \frac{2067}{4181} a^{3} - \frac{603}{4181} a^{2} - \frac{1769}{4181} a - \frac{828}{4181}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{152}$, which has order $152$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22305.8950792 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-95}) \), 3.3.361.1, 6.0.309512375.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ $18$ R $18$ $18$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ $18$ $18$ $18$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
19Data not computed