Normalized defining polynomial
\( x^{18} - 9 x^{17} + 183 x^{16} - 1197 x^{15} + 12952 x^{14} - 66141 x^{13} + 492684 x^{12} - 2013565 x^{11} + 11334053 x^{10} - 35236854 x^{9} + 157899241 x^{8} - 312205750 x^{7} + 1218166350 x^{6} - 884685172 x^{5} + 4598843440 x^{4} + 907163984 x^{3} + 8815673936 x^{2} - 7949622416 x + 5480201264 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-106457240281657124613827288017419894784=-\,2^{18}\cdot 13^{2}\cdot 193^{4}\cdot 229^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 193, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{3}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} + \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{3}{8} a^{6} + \frac{1}{4} a^{5}$, $\frac{1}{300687205736209129191648900232965697727986420958784398053683422663534104363456304} a^{17} - \frac{6544821544055104552226600238719036491127051465491017249722157459929476214318829}{150343602868104564595824450116482848863993210479392199026841711331767052181728152} a^{16} - \frac{10138716586852258410019440273771506617834666693656725893798906181392073297525157}{300687205736209129191648900232965697727986420958784398053683422663534104363456304} a^{15} + \frac{253296653472987752048727705835632471922388944401309457503074243653485586166243}{37585900717026141148956112529120712215998302619848049756710427832941763045432038} a^{14} - \frac{335085193085761265935267569529874139495886703947811213377950165504879576574685}{18792950358513070574478056264560356107999151309924024878355213916470881522716019} a^{13} - \frac{10479643028493593874128712377410113282845259494161860357707002476105075058552331}{300687205736209129191648900232965697727986420958784398053683422663534104363456304} a^{12} + \frac{25449526668391630047801102916374546822953707742452636527285175870067582211310719}{300687205736209129191648900232965697727986420958784398053683422663534104363456304} a^{11} + \frac{22683754624495572236889791832848302186307699601110539767436872898617347325705155}{150343602868104564595824450116482848863993210479392199026841711331767052181728152} a^{10} + \frac{30808382659161514270005033755958259171032220297135389177396351954638884781693165}{300687205736209129191648900232965697727986420958784398053683422663534104363456304} a^{9} + \frac{63411175056386154128884447404457585375349162497781333419952524024103018560512147}{300687205736209129191648900232965697727986420958784398053683422663534104363456304} a^{8} + \frac{2074771980534099389633200616112535793803842173735746626302345540582849253771493}{75171801434052282297912225058241424431996605239696099513420855665883526090864076} a^{7} - \frac{30360035858502053625959294241529853859148330407196700077701516314983656582170901}{75171801434052282297912225058241424431996605239696099513420855665883526090864076} a^{6} + \frac{1908967612832738749120107025044298787195062009869439540804492725010395631885939}{37585900717026141148956112529120712215998302619848049756710427832941763045432038} a^{5} - \frac{11655665003453102440871092786511614591245489737036275647022095469865936358270777}{75171801434052282297912225058241424431996605239696099513420855665883526090864076} a^{4} + \frac{2751000258223939862258532867829462187536225119637639830447242441402992157934876}{18792950358513070574478056264560356107999151309924024878355213916470881522716019} a^{3} - \frac{3214964107351784480932829930618059204648733062545695650873555174071333888535575}{37585900717026141148956112529120712215998302619848049756710427832941763045432038} a^{2} + \frac{7242598403219935512080801895993079820860627509897340297832568902027326373636694}{18792950358513070574478056264560356107999151309924024878355213916470881522716019} a + \frac{5415356845539271427663988131948259207100270598913457583471830077695862766104327}{18792950358513070574478056264560356107999151309924024878355213916470881522716019}$
Class group and class number
$C_{2}\times C_{2}\times C_{277500}$, which has order $1110000$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 708923.533235 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n782 are not computed |
| Character table for t18n782 is not computed |
Intermediate fields
| 3.3.229.1, 9.9.1789291325044.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.6.10.8 | $x^{6} + 2 x^{5} + 2$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $193$ | $\Q_{193}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{193}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{193}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{193}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 193.2.1.2 | $x^{2} + 965$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 193.2.1.2 | $x^{2} + 965$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 193.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 193.4.2.1 | $x^{4} + 1737 x^{2} + 931225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 229 | Data not computed | ||||||