Normalized defining polynomial
\( x^{18} - 7 x^{17} + 24 x^{16} - 52 x^{15} + 90 x^{14} - 122 x^{13} + 204 x^{12} - 388 x^{11} + 1049 x^{10} - 2415 x^{9} + 5604 x^{8} - 10288 x^{7} + 16596 x^{6} - 20168 x^{5} + 21040 x^{4} - 15392 x^{3} + 9344 x^{2} - 2048 x + 1024 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-105911076180375000000000000=-\,2^{12}\cdot 3^{25}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{8} + \frac{1}{16} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} + \frac{1}{32} a^{9} + \frac{1}{32} a^{8} + \frac{1}{32} a^{7} - \frac{3}{32} a^{6} + \frac{1}{16} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} + \frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{3}{64} a^{9} - \frac{1}{64} a^{8} - \frac{3}{64} a^{7} + \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{15} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{64} a^{7} + \frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{3}{16} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4352} a^{16} - \frac{15}{2176} a^{15} + \frac{13}{2176} a^{14} - \frac{1}{2176} a^{13} - \frac{9}{544} a^{12} - \frac{41}{2176} a^{11} + \frac{109}{2176} a^{10} - \frac{61}{2176} a^{9} - \frac{65}{4352} a^{8} + \frac{7}{544} a^{7} - \frac{49}{1088} a^{6} + \frac{177}{1088} a^{5} - \frac{37}{544} a^{4} - \frac{135}{272} a^{3} - \frac{45}{136} a^{2} - \frac{7}{34} a - \frac{8}{17}$, $\frac{1}{4740297525564928} a^{17} + \frac{32721454571}{592537190695616} a^{16} - \frac{3975586057869}{2370148762782464} a^{15} + \frac{6162180923661}{2370148762782464} a^{14} + \frac{4964891791451}{1185074381391232} a^{13} - \frac{34487323484977}{2370148762782464} a^{12} - \frac{32540575108281}{2370148762782464} a^{11} + \frac{116725566584913}{2370148762782464} a^{10} - \frac{289087709437213}{4740297525564928} a^{9} - \frac{144609389671375}{2370148762782464} a^{8} + \frac{25413642637947}{1185074381391232} a^{7} + \frac{63837298316251}{1185074381391232} a^{6} - \frac{66262917776581}{296268595347808} a^{5} + \frac{21413047799469}{148134297673904} a^{4} + \frac{32051030698623}{74067148836952} a^{3} + \frac{34127292862955}{74067148836952} a^{2} - \frac{1253600929117}{18516787209238} a - \frac{4214905390593}{9258393604619}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9396088.902996559 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.1.300.1, 6.0.1350000.1, 9.3.177147000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.22.83 | $x^{12} + 27 x^{11} - 27 x^{10} + 3 x^{9} - 9 x^{8} - 36 x^{7} - 9 x^{6} + 27 x^{5} + 36 x^{3} + 27 x + 36$ | $6$ | $2$ | $22$ | $C_6\times S_3$ | $[5/2]_{2}^{6}$ | |
| 5 | Data not computed | ||||||