Normalized defining polynomial
\( x^{18} - 4 x^{17} + 6 x^{16} + 2 x^{15} + 3 x^{14} - 96 x^{13} + 400 x^{12} - 598 x^{11} + 361 x^{10} + 1116 x^{9} - 1796 x^{8} + 1670 x^{7} + 1665 x^{6} - 1256 x^{5} + 1240 x^{4} + 1374 x^{3} + 1474 x^{2} - 2208 x + 534 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1056431860294718188453625856=-\,2^{20}\cdot 3^{9}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{12} + \frac{1}{12} a^{11} - \frac{1}{4} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{12} a^{7} + \frac{1}{12} a^{6} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{72} a^{14} - \frac{1}{12} a^{12} + \frac{5}{36} a^{11} - \frac{2}{9} a^{10} - \frac{1}{18} a^{9} + \frac{13}{36} a^{8} + \frac{1}{72} a^{6} - \frac{1}{9} a^{5} + \frac{5}{36} a^{4} + \frac{1}{36} a^{3} + \frac{7}{36} a^{2} - \frac{5}{12}$, $\frac{1}{432} a^{15} - \frac{1}{432} a^{14} + \frac{1}{72} a^{13} - \frac{7}{216} a^{12} - \frac{43}{216} a^{11} - \frac{1}{72} a^{10} - \frac{5}{24} a^{9} + \frac{25}{108} a^{8} + \frac{169}{432} a^{7} + \frac{67}{144} a^{6} - \frac{1}{24} a^{5} - \frac{35}{108} a^{4} - \frac{1}{18} a^{3} + \frac{5}{216} a^{2} - \frac{5}{72} a + \frac{23}{72}$, $\frac{1}{42768} a^{16} - \frac{7}{14256} a^{15} - \frac{5}{5346} a^{14} - \frac{31}{21384} a^{13} + \frac{421}{21384} a^{12} - \frac{4513}{21384} a^{11} - \frac{521}{7128} a^{10} + \frac{1657}{10692} a^{9} + \frac{7577}{42768} a^{8} + \frac{20941}{42768} a^{7} + \frac{215}{1188} a^{6} - \frac{839}{10692} a^{5} + \frac{4327}{10692} a^{4} + \frac{7847}{21384} a^{3} + \frac{4247}{21384} a^{2} - \frac{607}{2376} a + \frac{1753}{3564}$, $\frac{1}{68202126800277175728} a^{17} - \frac{311681046419041}{34101063400138587864} a^{16} - \frac{4596065365807837}{4262632925017323483} a^{15} + \frac{105509509924535785}{22734042266759058576} a^{14} + \frac{121254013436223787}{3789007044459843096} a^{13} - \frac{451673642812962961}{11367021133379529288} a^{12} - \frac{5063900297670914125}{34101063400138587864} a^{11} + \frac{1844469689676854957}{8525265850034646966} a^{10} + \frac{4002300176932804025}{22734042266759058576} a^{9} + \frac{2651507300059539643}{5683510566689764644} a^{8} + \frac{1538053310928575437}{3100096672739871624} a^{7} + \frac{21942231271893045847}{68202126800277175728} a^{6} - \frac{12000530895898890791}{34101063400138587864} a^{5} - \frac{497786172279153893}{34101063400138587864} a^{4} - \frac{804306914134964131}{4262632925017323483} a^{3} + \frac{3126915711733022681}{34101063400138587864} a^{2} + \frac{904098984315889685}{2841755283344882322} a - \frac{2058962149723278697}{11367021133379529288}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4564456.230782871 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.1.2028.1, 3.1.676.1, 6.0.160398576.1, 6.0.160398576.2, 9.1.133451615232.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13 | Data not computed | ||||||