Normalized defining polynomial
\( x^{18} - 4 x^{15} + 27 x^{12} + 42 x^{9} + 125 x^{6} - 11 x^{3} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-105548084868928352751387=-\,3^{27}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(63=3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{63}(1,·)$, $\chi_{63}(2,·)$, $\chi_{63}(4,·)$, $\chi_{63}(8,·)$, $\chi_{63}(11,·)$, $\chi_{63}(16,·)$, $\chi_{63}(22,·)$, $\chi_{63}(23,·)$, $\chi_{63}(25,·)$, $\chi_{63}(29,·)$, $\chi_{63}(32,·)$, $\chi_{63}(37,·)$, $\chi_{63}(43,·)$, $\chi_{63}(44,·)$, $\chi_{63}(46,·)$, $\chi_{63}(50,·)$, $\chi_{63}(53,·)$, $\chi_{63}(58,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{4}{13} a^{9} - \frac{5}{13} a^{6} + \frac{6}{13} a^{3} - \frac{1}{13}$, $\frac{1}{13} a^{13} + \frac{4}{13} a^{10} - \frac{5}{13} a^{7} + \frac{6}{13} a^{4} - \frac{1}{13} a$, $\frac{1}{13} a^{14} + \frac{4}{13} a^{11} - \frac{5}{13} a^{8} + \frac{6}{13} a^{5} - \frac{1}{13} a^{2}$, $\frac{1}{43303} a^{15} + \frac{826}{43303} a^{12} - \frac{13903}{43303} a^{9} - \frac{4195}{43303} a^{6} + \frac{15825}{43303} a^{3} + \frac{17261}{43303}$, $\frac{1}{43303} a^{16} + \frac{826}{43303} a^{13} - \frac{13903}{43303} a^{10} - \frac{4195}{43303} a^{7} + \frac{15825}{43303} a^{4} + \frac{17261}{43303} a$, $\frac{1}{43303} a^{17} + \frac{826}{43303} a^{14} - \frac{13903}{43303} a^{11} - \frac{4195}{43303} a^{8} + \frac{15825}{43303} a^{5} + \frac{17261}{43303} a^{2}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{524}{43303} a^{17} - \frac{3537}{43303} a^{14} + \frac{19711}{43303} a^{11} - \frac{16375}{43303} a^{8} + \frac{1441}{43303} a^{5} - \frac{218747}{43303} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{7})^+\), 3.3.3969.1, \(\Q(\zeta_{9})^+\), 3.3.3969.2, 6.0.64827.1, 6.0.47258883.2, \(\Q(\zeta_{9})\), 6.0.47258883.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |