Normalized defining polynomial
\( x^{18} - 7 x^{17} + 192 x^{16} - 1074 x^{15} + 16771 x^{14} - 79111 x^{13} + 901320 x^{12} - 3666123 x^{11} + 33000244 x^{10} - 115487055 x^{9} + 846514320 x^{8} - 2489903023 x^{7} + 15004567540 x^{6} - 35293480367 x^{5} + 174264924081 x^{4} - 296201831072 x^{3} + 1179077566010 x^{2} - 1110688906253 x + 3443926733743 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10540406459397059490686352709797854892453888=-\,2^{12}\cdot 3^{9}\cdot 29^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $245.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{17} + \frac{36960851712875848150644681889226771138804807149763195352180819580353993}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{16} + \frac{23537040766547260463653266475139795887298178631062442830164926837489412}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{15} + \frac{16891864113024611354469734949697862811957517912214613049471063821659947}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{14} - \frac{19406403080230510286842292921460591868657451825885476878654615020764167}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{13} + \frac{26496947669114982098249846293169400973131239084454560198753502980876339}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{12} + \frac{11916201188623108159717394751865764202809466004338913968405870899435400}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{11} + \frac{37942173547995342456437187714195917144323099022164544248250182848867320}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{10} + \frac{13217057596755533238228566528619694201770294916992669209025250045451735}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{9} - \frac{38633540016015304700603540617842262079659452391590656692823926654968692}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{8} - \frac{25369526658383899194234865489289260433370551906961111027722832357757418}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{7} - \frac{20971006952174468813643704093655288372730644687223681663100975404264603}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{6} + \frac{29441132287069328898081831220431137861735699534932468554737412936871808}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{5} + \frac{30581503552603920904339491118217371051308899031355599266923099819278186}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{4} - \frac{27126169816354846758416530463254711465841287374348522713355223356916048}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{3} + \frac{34430175194295918435489840073445072068123622952905514813888673119126949}{85452178137760780425437518781617748956149022387394234125249469687781691} a^{2} - \frac{2984601233138252070980314300932021880517923746611477338717243832043951}{85452178137760780425437518781617748956149022387394234125249469687781691} a - \frac{19608231867186806184878908329948056636644683909257849263989179015189756}{85452178137760780425437518781617748956149022387394234125249469687781691}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{12}\times C_{12}\times C_{33912}$, which has order $156266496$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 3.3.148.1, 3.3.1369.1, 6.0.14423849712.4, 6.0.1234140640983.2, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |