Normalized defining polynomial
\( x^{18} - 6 x^{17} + 60 x^{16} - 66 x^{15} + 4776 x^{14} - 22110 x^{13} + 162195 x^{12} + 142518 x^{11} + 1383927 x^{10} - 2492512 x^{9} + 12321687 x^{8} + 4485624 x^{7} + 34894203 x^{6} - 114235734 x^{5} + 266849940 x^{4} + 228252030 x^{3} + 2920222299 x^{2} - 6212683488 x + 8052186349 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-105377540665610698021122402053144975812532895744=-\,2^{30}\cdot 3^{31}\cdot 7^{9}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $409.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} + \frac{1}{9} a^{3} + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{4} + \frac{1}{9} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{5} + \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{981} a^{15} - \frac{49}{981} a^{14} + \frac{16}{327} a^{13} + \frac{7}{981} a^{12} - \frac{47}{981} a^{11} - \frac{116}{981} a^{10} + \frac{74}{981} a^{9} + \frac{40}{327} a^{8} + \frac{53}{327} a^{7} + \frac{151}{981} a^{6} - \frac{358}{981} a^{5} + \frac{59}{327} a^{4} - \frac{296}{981} a^{3} - \frac{467}{981} a^{2} + \frac{331}{981} a - \frac{82}{981}$, $\frac{1}{120663} a^{16} + \frac{55}{120663} a^{15} + \frac{626}{13407} a^{14} - \frac{5683}{120663} a^{13} - \frac{4987}{120663} a^{12} - \frac{46}{981} a^{11} - \frac{140}{1107} a^{10} + \frac{949}{120663} a^{9} - \frac{525}{4469} a^{8} - \frac{11762}{120663} a^{7} + \frac{9460}{120663} a^{6} + \frac{3101}{13407} a^{5} + \frac{51575}{120663} a^{4} + \frac{55295}{120663} a^{3} - \frac{18041}{40221} a^{2} - \frac{17978}{120663} a - \frac{1189}{2943}$, $\frac{1}{4273225069772591538748562422312528379002503535480159978237207656187620597} a^{17} + \frac{4280948287361142889347427972204622247576694711173023456106915842686}{1424408356590863846249520807437509459667501178493386659412402552062540199} a^{16} - \frac{898729556734230557364133865599730988759403151324682615964685147971330}{4273225069772591538748562422312528379002503535480159978237207656187620597} a^{15} - \frac{76399320907928888438481834912996288760252664517076972916609714355926515}{4273225069772591538748562422312528379002503535480159978237207656187620597} a^{14} - \frac{41902224738015676302263113263163871416984646430076631698785945334895788}{1424408356590863846249520807437509459667501178493386659412402552062540199} a^{13} - \frac{20414344957445868761716986498828789467739872849099537627059714342545065}{4273225069772591538748562422312528379002503535480159978237207656187620597} a^{12} - \frac{11744385721531157852042143378889918967845179797212264636522717260514045}{4273225069772591538748562422312528379002503535480159978237207656187620597} a^{11} - \frac{217292811378360543738971268576173918826057544491843001032480877489871872}{1424408356590863846249520807437509459667501178493386659412402552062540199} a^{10} + \frac{122317409444945123452188497191340573509487274942222606604380408372343703}{4273225069772591538748562422312528379002503535480159978237207656187620597} a^{9} - \frac{689666642999184523594844121535960975427891336799156163121993530974730691}{4273225069772591538748562422312528379002503535480159978237207656187620597} a^{8} - \frac{210154916581900902553865946573760797944655623552423987403427331609015417}{1424408356590863846249520807437509459667501178493386659412402552062540199} a^{7} - \frac{3644547916242747439969328994675166078350124297648331492114414940765197}{104225001701770525335330790788110448268353744767808779957005064785063917} a^{6} + \frac{948573420770338010557425292149752547338070078862201065942100779440736344}{4273225069772591538748562422312528379002503535480159978237207656187620597} a^{5} - \frac{487349391817763675230768847829072530105255220933307250619031483808220442}{1424408356590863846249520807437509459667501178493386659412402552062540199} a^{4} - \frac{1509391567365676918936921004944124427774311432982498125678484708873337970}{4273225069772591538748562422312528379002503535480159978237207656187620597} a^{3} - \frac{1055215380463234223484394901686154274982536691022380892992124909979529247}{4273225069772591538748562422312528379002503535480159978237207656187620597} a^{2} + \frac{54205044896326286874540370049477970359215759165496879107122249842165726}{1424408356590863846249520807437509459667501178493386659412402552062540199} a - \frac{34993873679573881971437709042280091459432828351959822721879462082449012}{104225001701770525335330790788110448268353744767808779957005064785063917}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{3846258}$, which has order $184620384$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 96135527.08384958 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.3.13689.2, 3.3.2808.1, 6.0.12340671610176.4, 6.0.129816400896.2, 9.9.460990789028310528.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.24.307 | $x^{12} + 28 x^{11} - 2 x^{10} + 16 x^{9} + 26 x^{8} + 8 x^{7} + 20 x^{6} - 24 x^{5} - 8 x^{4} + 32 x^{3} + 32 x^{2} + 32 x + 24$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.12.10.3 | $x^{12} - 13 x^{6} + 2704$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |