Normalized defining polynomial
\( x^{18} - 6 x^{17} + 60 x^{16} - 300 x^{15} + 5322 x^{14} + 5892 x^{13} + 180798 x^{12} + 131052 x^{11} + 971853 x^{10} - 2916182 x^{9} + 6632250 x^{8} - 5868096 x^{7} + 55674768 x^{6} + 50331552 x^{5} + 683861808 x^{4} + 2219455920 x^{3} + 5415393588 x^{2} + 6016806408 x + 4180912696 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-105377540665610698021122402053144975812532895744=-\,2^{30}\cdot 3^{31}\cdot 7^{9}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $409.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{18} a^{10} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{18} a^{11} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{72} a^{12} - \frac{1}{36} a^{11} + \frac{1}{72} a^{10} - \frac{1}{36} a^{9} - \frac{1}{8} a^{8} - \frac{5}{12} a^{7} - \frac{7}{24} a^{6} + \frac{1}{4} a^{5} + \frac{1}{12} a^{4} + \frac{5}{18} a^{3} - \frac{5}{36} a^{2} + \frac{5}{18} a - \frac{1}{18}$, $\frac{1}{144} a^{13} - \frac{1}{144} a^{12} + \frac{1}{48} a^{11} - \frac{1}{144} a^{10} - \frac{1}{48} a^{9} + \frac{7}{48} a^{8} + \frac{11}{48} a^{7} - \frac{1}{48} a^{6} + \frac{1}{3} a^{5} - \frac{17}{72} a^{4} + \frac{5}{72} a^{3} + \frac{1}{8} a^{2} - \frac{1}{18} a + \frac{1}{4}$, $\frac{1}{144} a^{14} - \frac{1}{72} a^{11} + \frac{1}{72} a^{10} - \frac{1}{72} a^{9} + \frac{11}{24} a^{7} - \frac{11}{48} a^{6} + \frac{25}{72} a^{5} - \frac{5}{12} a^{4} - \frac{5}{12} a^{3} + \frac{31}{72} a^{2} + \frac{1}{36} a - \frac{13}{36}$, $\frac{1}{144} a^{15} - \frac{1}{72} a^{11} - \frac{1}{36} a^{9} - \frac{1}{6} a^{8} + \frac{17}{48} a^{7} + \frac{1}{18} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{7}{24} a^{3} - \frac{1}{9} a^{2} - \frac{1}{12} a - \frac{1}{18}$, $\frac{1}{15696} a^{16} - \frac{53}{15696} a^{15} + \frac{1}{15696} a^{14} - \frac{5}{2616} a^{13} + \frac{5}{1962} a^{12} + \frac{35}{7848} a^{11} + \frac{5}{981} a^{10} - \frac{49}{3924} a^{9} + \frac{619}{5232} a^{8} + \frac{3557}{15696} a^{7} + \frac{41}{144} a^{6} - \frac{2723}{7848} a^{5} + \frac{351}{872} a^{4} - \frac{899}{7848} a^{3} - \frac{305}{7848} a^{2} + \frac{17}{1962} a - \frac{1145}{3924}$, $\frac{1}{496466317610377932230279706278855779453486376444998953826304810392224} a^{17} - \frac{356575549397222686371878271443737439185057701954780077830728809}{62058289701297241528784963284856972431685797055624869228288101299028} a^{16} - \frac{84899972856743018519372466184813145846951209014342181052987901989}{27581462089465440679459983682158654414082576469166608545905822799568} a^{15} - \frac{71063629691160963868692476627323758945340499699159616915125112827}{27581462089465440679459983682158654414082576469166608545905822799568} a^{14} + \frac{292425129524794116937303692394554441527586555002199730552291241329}{124116579402594483057569926569713944863371594111249738456576202598056} a^{13} - \frac{567738000642236874474536296042169680720241503002530069566852927585}{124116579402594483057569926569713944863371594111249738456576202598056} a^{12} - \frac{582401647054167813304361058943465597646346199677365200249302298187}{27581462089465440679459983682158654414082576469166608545905822799568} a^{11} + \frac{11553842601279586548359859105782632817334614561749414812997804783}{569342107351350839713623516374834609465007312436925405764111021092} a^{10} - \frac{7383401996016261447507437867121151691045730659387662104577391201975}{496466317610377932230279706278855779453486376444998953826304810392224} a^{9} + \frac{14539845913946638561610204969465496053954021567151410389575266380229}{124116579402594483057569926569713944863371594111249738456576202598056} a^{8} - \frac{6918904527119732898977682963864260963404325890234151913677449169767}{62058289701297241528784963284856972431685797055624869228288101299028} a^{7} - \frac{32513833898639776712185689484750625023640254504236893105753523180221}{82744386268396322038379951046475963242247729407499825637717468398704} a^{6} - \frac{9430810702163877632804444871697689676304486379155146787157224081381}{27581462089465440679459983682158654414082576469166608545905822799568} a^{5} + \frac{7746020464681612700684244841742002188939803089597279879780509191551}{15514572425324310382196240821214243107921449263906217307072025324757} a^{4} - \frac{60770446060129555033181315106342393598651372452271754511235716400751}{124116579402594483057569926569713944863371594111249738456576202598056} a^{3} - \frac{4355195341585978107146671513589194677828375368867277321161165471789}{13790731044732720339729991841079327207041288234583304272952911399784} a^{2} + \frac{27493475921368232947802939485992489340503457403897005348937445688067}{62058289701297241528784963284856972431685797055624869228288101299028} a + \frac{9674684484186129645771610141550922305331198471365842404977574979789}{62058289701297241528784963284856972431685797055624869228288101299028}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{24}\times C_{58536}$, which has order $179822592$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3533133948.6916637 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.3.2808.1, 3.3.13689.1, 6.0.129816400896.2, 6.0.12340671610176.3, 9.9.460990789028310528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.6.4.1 | $x^{6} + 39 x^{3} + 676$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.12.10.2 | $x^{12} + 39 x^{6} + 676$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |