Normalized defining polynomial
\( x^{18} - x^{17} + 7 x^{16} - 6 x^{15} + 41 x^{14} - 28 x^{13} + 232 x^{12} - 406 x^{11} + 1602 x^{10} - 2414 x^{9} + 9184 x^{8} - 12454 x^{7} + 50660 x^{6} - 61096 x^{5} + 74137 x^{4} - 86093 x^{3} + 103243 x^{2} - 100842 x + 117649 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10507848719141112156676338823=-\,7^{15}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(133=7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{133}(64,·)$, $\chi_{133}(1,·)$, $\chi_{133}(68,·)$, $\chi_{133}(11,·)$, $\chi_{133}(83,·)$, $\chi_{133}(20,·)$, $\chi_{133}(87,·)$, $\chi_{133}(26,·)$, $\chi_{133}(30,·)$, $\chi_{133}(96,·)$, $\chi_{133}(102,·)$, $\chi_{133}(39,·)$, $\chi_{133}(106,·)$, $\chi_{133}(45,·)$, $\chi_{133}(115,·)$, $\chi_{133}(121,·)$, $\chi_{133}(58,·)$, $\chi_{133}(125,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{4} a^{7} + \frac{1}{4}$, $\frac{1}{4} a^{8} + \frac{1}{4} a$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{5}$, $\frac{1}{4393564} a^{13} + \frac{515563}{4393564} a^{12} - \frac{11427}{627652} a^{11} - \frac{121799}{4393564} a^{10} - \frac{44367}{4393564} a^{9} - \frac{21137}{627652} a^{8} + \frac{127555}{4393564} a^{7} + \frac{140643}{627652} a^{6} + \frac{159095}{4393564} a^{5} - \frac{2147613}{4393564} a^{4} - \frac{298373}{627652} a^{3} + \frac{202117}{4393564} a^{2} - \frac{307299}{4393564} a + \frac{168401}{627652}$, $\frac{1}{123019792} a^{14} - \frac{1}{15377474} a^{13} + \frac{108879}{1098391} a^{12} + \frac{118451}{7688737} a^{11} + \frac{610095}{7688737} a^{10} - \frac{189069}{4393564} a^{9} - \frac{945955}{7688737} a^{8} + \frac{798247}{8787128} a^{7} + \frac{6547323}{15377474} a^{6} - \frac{1727134}{7688737} a^{5} - \frac{306130}{1098391} a^{4} + \frac{3162631}{7688737} a^{3} - \frac{12486535}{30754948} a^{2} + \frac{27153}{156913} a + \frac{106145}{2510608}$, $\frac{1}{861138544} a^{15} - \frac{1}{861138544} a^{14} + \frac{1}{15377474} a^{13} - \frac{3609028}{53821159} a^{12} - \frac{4728845}{215284636} a^{11} + \frac{3679227}{30754948} a^{10} + \frac{3141517}{107642318} a^{9} - \frac{7342189}{61509896} a^{8} - \frac{50855613}{430569272} a^{7} + \frac{32311413}{107642318} a^{6} + \frac{942569}{7688737} a^{5} + \frac{10260059}{215284636} a^{4} + \frac{62239725}{215284636} a^{3} - \frac{6074403}{15377474} a^{2} + \frac{1920025}{17574256} a + \frac{739025}{2510608}$, $\frac{1}{6027969808} a^{16} - \frac{1}{6027969808} a^{15} + \frac{1}{861138544} a^{14} + \frac{85}{753496226} a^{13} - \frac{104572715}{1506992452} a^{12} - \frac{7748371}{215284636} a^{11} + \frac{180299723}{1506992452} a^{10} + \frac{5934165}{430569272} a^{9} - \frac{144275289}{3013984904} a^{8} - \frac{96278563}{3013984904} a^{7} - \frac{29156551}{107642318} a^{6} - \frac{551805907}{1506992452} a^{5} - \frac{467244573}{1506992452} a^{4} - \frac{60922755}{215284636} a^{3} + \frac{55582885}{123019792} a^{2} + \frac{3161609}{17574256} a - \frac{1129485}{2510608}$, $\frac{1}{42195788656} a^{17} - \frac{1}{42195788656} a^{16} + \frac{1}{6027969808} a^{15} - \frac{3}{21097894328} a^{14} - \frac{295}{5274473582} a^{13} - \frac{44140413}{376748113} a^{12} - \frac{1223331051}{10548947164} a^{11} + \frac{204991177}{3013984904} a^{10} - \frac{1771111255}{21097894328} a^{9} - \frac{1471420443}{21097894328} a^{8} + \frac{63522899}{1506992452} a^{7} - \frac{2596107417}{5274473582} a^{6} - \frac{378796001}{2637236791} a^{5} - \frac{490058973}{1506992452} a^{4} + \frac{180604733}{861138544} a^{3} + \frac{41051221}{123019792} a^{2} - \frac{255227}{2510608} a - \frac{537357}{1255304}$
Class group and class number
$C_{2}\times C_{26}$, which has order $52$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{226365}{21097894328} a^{17} + \frac{75455}{42195788656} a^{16} + \frac{377275}{6027969808} a^{15} + \frac{980915}{42195788656} a^{14} + \frac{3848205}{10548947164} a^{13} + \frac{290071}{1506992452} a^{12} + \frac{22561045}{10548947164} a^{11} - \frac{2188195}{1506992452} a^{10} + \frac{255415175}{21097894328} a^{9} - \frac{123368925}{21097894328} a^{8} + \frac{205916695}{3013984904} a^{7} - \frac{196862095}{10548947164} a^{6} + \frac{4141145837}{10548947164} a^{5} - \frac{4602755}{215284636} a^{4} + \frac{1886375}{61509896} a^{3} + \frac{75455}{17574256} a^{2} + \frac{75455}{2510608} a + \frac{528185}{2510608} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 833965.243856 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.17689.1, 3.3.17689.2, \(\Q(\zeta_{7})^+\), 3.3.361.1, 6.0.2190305047.1, 6.0.2190305047.2, \(\Q(\zeta_{7})\), 6.0.44700103.1, 9.9.5534900853769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19 | Data not computed | ||||||