Normalized defining polynomial
\( x^{18} - 3 x^{17} + 3 x^{16} - 34 x^{15} - 9 x^{14} + 80 x^{13} + 231 x^{12} + 560 x^{11} + 2030 x^{10} - 3725 x^{9} + 25845 x^{8} - 63455 x^{7} + 178616 x^{6} - 258728 x^{5} + 511018 x^{4} - 557964 x^{3} + 306556 x^{2} + 149960 x + 13961 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1049391593213911389381400343=-\,17^{12}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{3}{11} a^{12} + \frac{3}{11} a^{10} - \frac{4}{11} a^{9} - \frac{1}{11} a^{8} + \frac{1}{11} a^{7} - \frac{4}{11} a^{6} - \frac{1}{11} a^{5} + \frac{4}{11} a^{4} - \frac{1}{11} a^{3} - \frac{2}{11} a^{2} - \frac{2}{11} a + \frac{2}{11}$, $\frac{1}{121} a^{14} + \frac{4}{121} a^{13} + \frac{58}{121} a^{12} + \frac{25}{121} a^{11} + \frac{43}{121} a^{10} - \frac{5}{121} a^{9} - \frac{14}{121} a^{7} + \frac{39}{121} a^{6} - \frac{8}{121} a^{5} + \frac{58}{121} a^{4} + \frac{41}{121} a^{3} - \frac{26}{121} a^{2} - \frac{4}{11} a - \frac{53}{121}$, $\frac{1}{25289} a^{15} - \frac{28}{25289} a^{14} - \frac{1038}{25289} a^{13} - \frac{5582}{25289} a^{12} - \frac{4387}{25289} a^{11} + \frac{9267}{25289} a^{10} + \frac{11050}{25289} a^{9} - \frac{5943}{25289} a^{8} - \frac{573}{1331} a^{7} + \frac{9029}{25289} a^{6} - \frac{8035}{25289} a^{5} + \frac{3}{209} a^{4} + \frac{10641}{25289} a^{3} - \frac{10465}{25289} a^{2} + \frac{3170}{25289} a - \frac{8105}{25289}$, $\frac{1}{2642422321} a^{16} - \frac{16571}{2642422321} a^{15} - \frac{441341}{2642422321} a^{14} - \frac{93875648}{2642422321} a^{13} + \frac{510209477}{2642422321} a^{12} + \frac{260728970}{2642422321} a^{11} + \frac{5465580}{12643169} a^{10} - \frac{1266676540}{2642422321} a^{9} + \frac{15746380}{240220211} a^{8} + \frac{370366415}{2642422321} a^{7} - \frac{2075553}{2642422321} a^{6} - \frac{655946296}{2642422321} a^{5} + \frac{677689049}{2642422321} a^{4} - \frac{15141505}{240220211} a^{3} - \frac{85229058}{2642422321} a^{2} + \frac{53777607}{114887927} a + \frac{54279535}{114887927}$, $\frac{1}{356650927810127138891898763762522405} a^{17} - \frac{458477568794627136800169}{71330185562025427778379752752504481} a^{16} + \frac{6660719158871213983272835251358}{356650927810127138891898763762522405} a^{15} + \frac{67457973228013407164103299889034}{71330185562025427778379752752504481} a^{14} - \frac{7353970281426998573508680167512939}{356650927810127138891898763762522405} a^{13} + \frac{217193179545909149580996174540414}{816134846247430523780088704262065} a^{12} - \frac{19498004750059366614774928338853106}{71330185562025427778379752752504481} a^{11} + \frac{13070686721984320731707420365605700}{71330185562025427778379752752504481} a^{10} + \frac{27387351518651625295335438516792200}{71330185562025427778379752752504481} a^{9} + \frac{144082636519219045398876515333997}{536317184676882915626915434229357} a^{8} + \frac{14162174550083690071415285583938321}{71330185562025427778379752752504481} a^{7} - \frac{29556316572002051394018170056735699}{71330185562025427778379752752504481} a^{6} + \frac{141257171619968365439174322401995966}{356650927810127138891898763762522405} a^{5} - \frac{35097648231858842193261992056433954}{71330185562025427778379752752504481} a^{4} + \frac{33277963941208010117452695866523948}{356650927810127138891898763762522405} a^{3} + \frac{254736896226121615466077893070630}{536317184676882915626915434229357} a^{2} + \frac{3048938950075829778014311944093552}{15506562078701179951821685380979235} a + \frac{6993349407512407723777107531433656}{15506562078701179951821685380979235}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1645723.56403 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.1.23.1 x3, 6.0.12167.1, 9.1.6754681446529.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{18}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |