Normalized defining polynomial
\( x^{18} - 4 x^{17} + 11 x^{16} - 20 x^{15} + 31 x^{14} - 41 x^{13} + 56 x^{12} - 69 x^{11} + 64 x^{10} - 59 x^{9} + 49 x^{8} - 48 x^{7} + 28 x^{6} - 5 x^{5} + 17 x^{4} - 5 x^{3} - 2 x^{2} - x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10490638424730354432=-\,2^{8}\cdot 3^{9}\cdot 113^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{42} a^{15} + \frac{1}{14} a^{14} - \frac{1}{14} a^{13} + \frac{1}{14} a^{12} - \frac{2}{7} a^{11} + \frac{3}{14} a^{10} - \frac{4}{21} a^{9} - \frac{1}{21} a^{8} + \frac{19}{42} a^{7} + \frac{8}{21} a^{6} - \frac{3}{7} a^{5} + \frac{11}{42} a^{4} - \frac{17}{42} a^{3} + \frac{1}{42} a^{2} + \frac{3}{7} a - \frac{11}{42}$, $\frac{1}{42} a^{16} + \frac{1}{21} a^{14} - \frac{1}{21} a^{13} - \frac{1}{6} a^{12} + \frac{1}{14} a^{11} - \frac{1}{2} a^{10} - \frac{10}{21} a^{9} - \frac{1}{14} a^{8} - \frac{13}{42} a^{7} + \frac{3}{7} a^{6} - \frac{19}{42} a^{5} + \frac{1}{7} a^{4} - \frac{2}{21} a^{3} + \frac{1}{42} a^{2} - \frac{3}{14} a + \frac{19}{42}$, $\frac{1}{32298} a^{17} - \frac{3}{10766} a^{16} + \frac{4}{2307} a^{15} + \frac{719}{5383} a^{14} + \frac{1023}{10766} a^{13} + \frac{1535}{16149} a^{12} + \frac{4657}{16149} a^{11} - \frac{5113}{32298} a^{10} + \frac{853}{10766} a^{9} + \frac{2032}{16149} a^{8} + \frac{933}{10766} a^{7} + \frac{3009}{10766} a^{6} - \frac{14347}{32298} a^{5} - \frac{1887}{5383} a^{4} + \frac{10487}{32298} a^{3} + \frac{4540}{16149} a^{2} - \frac{1415}{5383} a - \frac{4819}{10766}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2147}{5383} a^{17} + \frac{42883}{32298} a^{16} - \frac{108499}{32298} a^{15} + \frac{23563}{4614} a^{14} - \frac{76833}{10766} a^{13} + \frac{42873}{5383} a^{12} - \frac{356539}{32298} a^{11} + \frac{62425}{5383} a^{10} - \frac{95129}{16149} a^{9} + \frac{137185}{32298} a^{8} - \frac{12227}{16149} a^{7} + \frac{56551}{16149} a^{6} + \frac{129631}{32298} a^{5} - \frac{228467}{32298} a^{4} - \frac{15083}{4614} a^{3} - \frac{15221}{5383} a^{2} + \frac{12381}{10766} a + \frac{12400}{16149} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 327.87771807 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.339.1, 6.0.344763.1, 9.3.623331504.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $113$ | 113.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 113.12.6.1 | $x^{12} + 34629528 x^{6} - 18424351793 x^{2} + 299801052375696$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |