Normalized defining polynomial
\( x^{18} - 3 x^{17} + 7 x^{16} - 24 x^{15} + 322 x^{14} - 530 x^{13} + 4726 x^{12} - 6396 x^{11} + 62002 x^{10} - 59326 x^{9} + 668982 x^{8} - 297270 x^{7} + 5328864 x^{6} - 804120 x^{5} + 29142209 x^{4} - 3014537 x^{3} + 98419102 x^{2} - 6470051 x + 152453839 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-104058872623657018481772248523222499=-\,7^{12}\cdot 13^{12}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1729=7\cdot 13\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1729}(1,·)$, $\chi_{1729}(835,·)$, $\chi_{1729}(1348,·)$, $\chi_{1729}(438,·)$, $\chi_{1729}(1101,·)$, $\chi_{1729}(911,·)$, $\chi_{1729}(1236,·)$, $\chi_{1729}(666,·)$, $\chi_{1729}(989,·)$, $\chi_{1729}(417,·)$, $\chi_{1729}(932,·)$, $\chi_{1729}(1576,·)$, $\chi_{1729}(170,·)$, $\chi_{1729}(172,·)$, $\chi_{1729}(113,·)$, $\chi_{1729}(1654,·)$, $\chi_{1729}(1082,·)$, $\chi_{1729}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{30} a^{12} - \frac{1}{15} a^{11} - \frac{1}{5} a^{9} + \frac{7}{30} a^{8} - \frac{1}{3} a^{7} - \frac{2}{15} a^{6} + \frac{1}{6} a^{5} - \frac{11}{30} a^{4} - \frac{1}{15} a^{3} - \frac{2}{15} a^{2} - \frac{1}{2} a + \frac{13}{30}$, $\frac{1}{30} a^{13} - \frac{2}{15} a^{11} - \frac{1}{5} a^{10} - \frac{1}{6} a^{9} + \frac{2}{15} a^{8} + \frac{1}{5} a^{7} - \frac{1}{10} a^{6} - \frac{1}{30} a^{5} + \frac{1}{5} a^{4} - \frac{4}{15} a^{3} + \frac{7}{30} a^{2} + \frac{13}{30} a - \frac{2}{15}$, $\frac{1}{30} a^{14} + \frac{1}{30} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{2}{15} a^{8} - \frac{13}{30} a^{7} + \frac{13}{30} a^{6} - \frac{2}{15} a^{5} - \frac{7}{30} a^{4} + \frac{7}{15} a^{3} + \frac{2}{5} a^{2} + \frac{11}{30} a - \frac{4}{15}$, $\frac{1}{303630150} a^{15} + \frac{834183}{101210050} a^{14} + \frac{28568}{151815075} a^{13} - \frac{1499948}{151815075} a^{12} - \frac{21127451}{303630150} a^{11} + \frac{51971809}{303630150} a^{10} - \frac{4733959}{303630150} a^{9} + \frac{16611043}{303630150} a^{8} + \frac{6226747}{50605025} a^{7} - \frac{123440117}{303630150} a^{6} - \frac{9063014}{50605025} a^{5} + \frac{29635103}{101210050} a^{4} - \frac{38120753}{151815075} a^{3} - \frac{21501503}{151815075} a^{2} - \frac{65824231}{303630150} a - \frac{4787752}{50605025}$, $\frac{1}{109914114300} a^{16} + \frac{17}{18319019050} a^{15} - \frac{289890871}{54957057150} a^{14} + \frac{285074878}{27478528575} a^{13} + \frac{149833108}{9159509525} a^{12} - \frac{1080627716}{27478528575} a^{11} + \frac{6663005867}{27478528575} a^{10} + \frac{1479641088}{9159509525} a^{9} - \frac{1934347736}{27478528575} a^{8} - \frac{12503555449}{27478528575} a^{7} + \frac{388306805}{2198282286} a^{6} + \frac{5815154408}{27478528575} a^{5} - \frac{1727288141}{27478528575} a^{4} - \frac{439501587}{9159509525} a^{3} - \frac{46557822589}{109914114300} a^{2} - \frac{385244909}{5495705715} a + \frac{6450530623}{36638038100}$, $\frac{1}{33919804422025425790109618731136838300} a^{17} + \frac{30236559446389760726908943}{11306601474008475263369872910378946100} a^{16} - \frac{140695255978920796121599423}{339198044220254257901096187311368383} a^{15} + \frac{10136290422255605446428033670927019}{3391980442202542579010961873113683830} a^{14} + \frac{31684556885951761560253823380185944}{2826650368502118815842468227594736525} a^{13} + \frac{10262708725265545063569466792742372}{1695990221101271289505480936556841915} a^{12} - \frac{52229930378787473793924702613866219}{2826650368502118815842468227594736525} a^{11} - \frac{1445400604944690375807309237410957089}{8479951105506356447527404682784209575} a^{10} - \frac{1036269215336121463591226778601787289}{5653300737004237631684936455189473050} a^{9} - \frac{361778293937181211098351424189910536}{1695990221101271289505480936556841915} a^{8} - \frac{5258357414981377171651659277598002793}{16959902211012712895054809365568419150} a^{7} - \frac{884462925006835197047369546802315429}{5653300737004237631684936455189473050} a^{6} - \frac{959116814249149519970995748876983836}{2826650368502118815842468227594736525} a^{5} + \frac{40675781417340894395731639153501855}{113066014740084752633698729103789461} a^{4} + \frac{581956474843780646023456152862342797}{2261320294801695052673974582075789220} a^{3} - \frac{9063825329707145862949183137638469121}{33919804422025425790109618731136838300} a^{2} - \frac{4182443978708583942019147751929965983}{11306601474008475263369872910378946100} a - \frac{2322806205695963773606355319284782691}{11306601474008475263369872910378946100}$
Class group and class number
$C_{18}\times C_{1638}$, which has order $29484$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.3.8281.1, \(\Q(\zeta_{7})^+\), 3.3.8281.2, 3.3.169.1, 6.0.470355657499.3, 6.0.16468459.1, 6.0.470355657499.2, 6.0.195899899.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |