Normalized defining polynomial
\( x^{18} - 9 x^{17} + 78 x^{16} - 412 x^{15} + 2424 x^{14} - 10500 x^{13} + 52678 x^{12} - 200712 x^{11} + 869706 x^{10} - 2838208 x^{9} + 10478436 x^{8} - 28265604 x^{7} + 87960240 x^{6} - 186727650 x^{5} + 478893783 x^{4} - 727075369 x^{3} + 1476438822 x^{2} - 1247429208 x + 1875384008 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-103357462359885242066848874838225951=-\,3^{24}\cdot 7^{12}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1953=3^{2}\cdot 7\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1953}(1024,·)$, $\chi_{1953}(1,·)$, $\chi_{1953}(898,·)$, $\chi_{1953}(1675,·)$, $\chi_{1953}(652,·)$, $\chi_{1953}(1549,·)$, $\chi_{1953}(526,·)$, $\chi_{1953}(466,·)$, $\chi_{1953}(340,·)$, $\chi_{1953}(1303,·)$, $\chi_{1953}(1177,·)$, $\chi_{1953}(1117,·)$, $\chi_{1953}(991,·)$, $\chi_{1953}(1828,·)$, $\chi_{1953}(1768,·)$, $\chi_{1953}(1642,·)$, $\chi_{1953}(373,·)$, $\chi_{1953}(247,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7}$, $\frac{1}{142} a^{15} - \frac{16}{71} a^{14} + \frac{14}{71} a^{13} - \frac{23}{142} a^{12} + \frac{11}{142} a^{11} + \frac{16}{71} a^{10} + \frac{5}{142} a^{8} + \frac{8}{71} a^{7} + \frac{25}{71} a^{6} - \frac{17}{142} a^{5} - \frac{27}{142} a^{4} - \frac{23}{71} a^{3} + \frac{31}{71} a^{2} + \frac{1}{71} a + \frac{8}{71}$, $\frac{1}{36068} a^{16} - \frac{31}{9017} a^{15} - \frac{38}{9017} a^{14} + \frac{575}{9017} a^{13} + \frac{88}{9017} a^{12} - \frac{4111}{18034} a^{11} - \frac{975}{18034} a^{10} - \frac{1898}{9017} a^{9} + \frac{31}{9017} a^{8} - \frac{604}{9017} a^{7} + \frac{2520}{9017} a^{6} + \frac{1680}{9017} a^{5} - \frac{201}{18034} a^{4} - \frac{3391}{18034} a^{3} + \frac{8427}{36068} a^{2} + \frac{1307}{9017} a - \frac{2214}{9017}$, $\frac{1}{868110330163292037928503576823857715356459549741101372} a^{17} - \frac{3792148622125457076283842358328512662235827435591}{868110330163292037928503576823857715356459549741101372} a^{16} + \frac{180549686956598270351706869842386328718234014287203}{217027582540823009482125894205964428839114887435275343} a^{15} - \frac{35580464869883497479635372737815390232303044588785962}{217027582540823009482125894205964428839114887435275343} a^{14} - \frac{31812956631665748912316472078537796409033996114436591}{217027582540823009482125894205964428839114887435275343} a^{13} + \frac{56976617227727430172923163393984909959050678494051859}{434055165081646018964251788411928857678229774870550686} a^{12} - \frac{44946738783956868960758401789679186075272769424320499}{217027582540823009482125894205964428839114887435275343} a^{11} - \frac{15776296616064118699976738866928614911595864699249869}{217027582540823009482125894205964428839114887435275343} a^{10} + \frac{57514473071681216611591143873115347924242143943771385}{434055165081646018964251788411928857678229774870550686} a^{9} + \frac{51088964758476741369451431099947768528649322835184308}{217027582540823009482125894205964428839114887435275343} a^{8} - \frac{72775388762620113824641442008556004950414465087097106}{217027582540823009482125894205964428839114887435275343} a^{7} - \frac{102471116860733470535448361903209249556459676666363723}{217027582540823009482125894205964428839114887435275343} a^{6} + \frac{29063484903835805972124470171151585737093968696491925}{434055165081646018964251788411928857678229774870550686} a^{5} - \frac{61233018352127233049697427211266022893668840120464785}{217027582540823009482125894205964428839114887435275343} a^{4} + \frac{16185418899120935605806966065126667736607368661251675}{868110330163292037928503576823857715356459549741101372} a^{3} + \frac{373622981323338623518437947023803618417710821748044441}{868110330163292037928503576823857715356459549741101372} a^{2} + \frac{14129069964822202956088418386914907460575860025680807}{217027582540823009482125894205964428839114887435275343} a + \frac{67674688112408424667309996962623652707202343391789799}{217027582540823009482125894205964428839114887435275343}$
Class group and class number
$C_{3}\times C_{6}\times C_{13338}$, which has order $240084$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, 6.0.195458751.1, 6.0.71528191.1, 6.0.469296461151.6, 6.0.469296461151.7, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $31$ | 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |