Normalized defining polynomial
\( x^{18} - 3 x^{17} + 6 x^{16} + 90 x^{15} - 39 x^{14} - 1401 x^{13} + 20406 x^{12} - 100113 x^{11} + 481848 x^{10} - 1697075 x^{9} + 6375792 x^{8} - 19367253 x^{7} + 59042850 x^{6} - 141091389 x^{5} + 317659023 x^{4} - 527232024 x^{3} + 800021124 x^{2} - 738392301 x + 619938747 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1030197932390779328264996615851405379432448=-\,2^{12}\cdot 3^{30}\cdot 7^{14}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $215.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{7}$, $\frac{1}{7091111092767018310572894719537007879049455708175008813} a^{17} - \frac{620232110578703479615745749643173714903396864323877960}{7091111092767018310572894719537007879049455708175008813} a^{16} + \frac{839476668428073899632699051432926941984818722012146129}{7091111092767018310572894719537007879049455708175008813} a^{15} - \frac{240225260662819579967522080578656560386922572552642422}{7091111092767018310572894719537007879049455708175008813} a^{14} - \frac{468745692176334447191467144110586841763923367013781}{23403006906821842609151467721244250425905794416419171} a^{13} + \frac{30567320768187086040090702764718687507780662906499822}{214882154326273282138572567258697208456044112368939661} a^{12} - \frac{206735160057452696556525881670163233081532824044491472}{2363703697589006103524298239845669293016485236058336271} a^{11} - \frac{743935568126575926113811676689566374204116416304716092}{7091111092767018310572894719537007879049455708175008813} a^{10} - \frac{2263801661473170983617490303734041588244556937867835}{70209020720465527827454403163732751277717383249257513} a^{9} - \frac{107108695373364469062063774850647054155149363308903903}{2363703697589006103524298239845669293016485236058336271} a^{8} - \frac{924619676511207344746991324881042572494698344609032405}{7091111092767018310572894719537007879049455708175008813} a^{7} - \frac{393765666166235900739830239406947649961282213935590381}{2363703697589006103524298239845669293016485236058336271} a^{6} + \frac{21634682801673101231523639870549346559668423044017583}{2363703697589006103524298239845669293016485236058336271} a^{5} - \frac{633469643710795544706203934418845558978619181414088529}{2363703697589006103524298239845669293016485236058336271} a^{4} + \frac{1019381324281133964423878449196232788084885720155686530}{2363703697589006103524298239845669293016485236058336271} a^{3} + \frac{215754518219037136236637911803314713956762719772329270}{2363703697589006103524298239845669293016485236058336271} a^{2} - \frac{860599295787888354064092740233257644200551567346699703}{2363703697589006103524298239845669293016485236058336271} a - \frac{861732370863556097232772621876434319116652470313489278}{2363703697589006103524298239845669293016485236058336271}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}\times C_{18}\times C_{11718}$, which has order $15186528$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4695974.091249611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.3.756.1, 3.3.3969.2, 6.0.6953878512.6, 6.0.191666276487.3, 9.9.756284282720064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.9.15.14 | $x^{9} + 3 x^{7} + 3 x^{6} + 6 x^{3} + 15$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ |
| 3.9.15.14 | $x^{9} + 3 x^{7} + 3 x^{6} + 6 x^{3} + 15$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| $7$ | 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |