Normalized defining polynomial
\( x^{18} - x^{17} + 191 x^{16} + 237 x^{15} + 24585 x^{14} + 119723 x^{13} + 2169003 x^{12} + 13020561 x^{11} + 116404855 x^{10} + 597868077 x^{9} + 3990653485 x^{8} + 18385432151 x^{7} + 99487490867 x^{6} + 368692180073 x^{5} + 1482883758697 x^{4} + 3744823323947 x^{3} + 10112290341964 x^{2} + 13574001819584 x + 22784958920704 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10293947901026815839844463877644638832922587136=-\,2^{12}\cdot 3^{9}\cdot 7^{15}\cdot 11^{6}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $359.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{2}$, $\frac{1}{32} a^{7} + \frac{1}{32} a^{6} - \frac{1}{8} a^{4} + \frac{3}{32} a^{3} + \frac{3}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{32} a^{8} - \frac{1}{32} a^{6} - \frac{1}{8} a^{5} - \frac{1}{32} a^{4} - \frac{1}{4} a^{3} - \frac{15}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{448} a^{9} + \frac{3}{448} a^{8} - \frac{1}{64} a^{7} + \frac{3}{448} a^{6} - \frac{5}{448} a^{5} - \frac{19}{448} a^{4} - \frac{89}{448} a^{3} + \frac{13}{448} a^{2} + \frac{25}{112} a - \frac{1}{7}$, $\frac{1}{2240} a^{10} - \frac{1}{2240} a^{9} - \frac{33}{2240} a^{8} - \frac{11}{2240} a^{7} - \frac{101}{2240} a^{6} + \frac{57}{2240} a^{5} - \frac{167}{2240} a^{4} + \frac{467}{2240} a^{3} + \frac{15}{112} a^{2} - \frac{9}{35} a + \frac{4}{35}$, $\frac{1}{8960} a^{11} - \frac{1}{4480} a^{10} - \frac{1}{4480} a^{9} - \frac{7}{640} a^{8} - \frac{1}{448} a^{7} + \frac{89}{4480} a^{6} + \frac{233}{4480} a^{5} - \frac{143}{4480} a^{4} + \frac{243}{8960} a^{3} - \frac{271}{560} a^{2} - \frac{23}{560} a + \frac{9}{35}$, $\frac{1}{35840} a^{12} - \frac{1}{35840} a^{11} - \frac{1}{4480} a^{10} - \frac{9}{8960} a^{9} - \frac{43}{17920} a^{8} + \frac{31}{17920} a^{7} + \frac{167}{8960} a^{6} - \frac{927}{8960} a^{5} + \frac{177}{7168} a^{4} + \frac{2979}{35840} a^{3} + \frac{117}{1280} a^{2} - \frac{31}{112} a + \frac{3}{7}$, $\frac{1}{143360} a^{13} + \frac{1}{20480} a^{11} - \frac{3}{35840} a^{10} - \frac{29}{71680} a^{9} + \frac{157}{17920} a^{8} + \frac{59}{10240} a^{7} - \frac{263}{4480} a^{6} + \frac{16441}{143360} a^{5} - \frac{249}{3584} a^{4} + \frac{14591}{143360} a^{3} - \frac{439}{1024} a^{2} + \frac{227}{2240} a + \frac{11}{70}$, $\frac{1}{143360} a^{14} - \frac{1}{143360} a^{12} - \frac{1}{35840} a^{11} + \frac{3}{71680} a^{10} - \frac{1}{2560} a^{9} + \frac{597}{71680} a^{8} - \frac{137}{8960} a^{7} - \frac{2663}{143360} a^{6} + \frac{1223}{17920} a^{5} + \frac{15511}{143360} a^{4} - \frac{7003}{35840} a^{3} - \frac{5}{128} a^{2} + \frac{193}{560} a - \frac{1}{7}$, $\frac{1}{573440} a^{15} - \frac{1}{143360} a^{12} - \frac{19}{573440} a^{11} - \frac{1}{143360} a^{10} + \frac{3}{7168} a^{9} + \frac{207}{14336} a^{8} - \frac{1131}{81920} a^{7} + \frac{779}{71680} a^{6} + \frac{103}{1024} a^{5} - \frac{1873}{28672} a^{4} + \frac{9267}{114688} a^{3} + \frac{13103}{28672} a^{2} - \frac{1129}{8960} a - \frac{13}{56}$, $\frac{1}{1358181171200} a^{16} + \frac{132317}{1358181171200} a^{15} + \frac{1165329}{339545292800} a^{14} - \frac{309699}{169772646400} a^{13} + \frac{78661}{12019302400} a^{12} + \frac{14024249}{1358181171200} a^{11} + \frac{9841473}{339545292800} a^{10} - \frac{82342077}{84886323200} a^{9} - \frac{5029009773}{1358181171200} a^{8} - \frac{1700891061}{271636234240} a^{7} + \frac{11998511387}{339545292800} a^{6} - \frac{709803743}{33954529280} a^{5} - \frac{79995670281}{1358181171200} a^{4} + \frac{17853910551}{271636234240} a^{3} - \frac{165829932973}{339545292800} a^{2} + \frac{9948787679}{21221580800} a + \frac{2851151}{5868800}$, $\frac{1}{31324456626910685066296914878284184948765260530750649794560000} a^{17} - \frac{3705438235826284270724803028321189974898069852801}{15662228313455342533148457439142092474382630265375324897280000} a^{16} + \frac{12833167150981146969835825238257649783094432221688748993}{31324456626910685066296914878284184948765260530750649794560000} a^{15} + \frac{8003879645885215112997711149652268310124719948254585611}{7831114156727671266574228719571046237191315132687662448640000} a^{14} - \frac{40886641412990397790239843713374227806737008518971828259}{31324456626910685066296914878284184948765260530750649794560000} a^{13} + \frac{135313851028426980003185896224189369832191346200072953191}{15662228313455342533148457439142092474382630265375324897280000} a^{12} + \frac{142999200347219514481736828478936888686199677922167774203}{4474922375272955009470987839754883564109322932964378542080000} a^{11} - \frac{52725704839047015133229049694517872463535289953974719223}{1566222831345534253314845743914209247438263026537532489728000} a^{10} - \frac{1909337381226601719650443864400976825537451594329453304537}{6264891325382137013259382975656836989753052106150129958912000} a^{9} - \frac{76014391964233577025375137732724436115406525703467788428619}{15662228313455342533148457439142092474382630265375324897280000} a^{8} - \frac{119855021784731316253823941317183168112422843082353950300477}{31324456626910685066296914878284184948765260530750649794560000} a^{7} - \frac{188129144715807674680037526726332077067107407258550926158043}{7831114156727671266574228719571046237191315132687662448640000} a^{6} - \frac{3331898840083221224551336141817811278456092477540757954321761}{31324456626910685066296914878284184948765260530750649794560000} a^{5} + \frac{1774026358579030727232978575348577183816457244496059993039717}{15662228313455342533148457439142092474382630265375324897280000} a^{4} - \frac{7577415546015026129513057535817106489548370740114582633495137}{31324456626910685066296914878284184948765260530750649794560000} a^{3} + \frac{233199211498205489872653046716930213060680629392784214209571}{7831114156727671266574228719571046237191315132687662448640000} a^{2} - \frac{13259507462461466026864055332294177293514358696533285528621}{97888926959095890832177858994638077964891439158595780608000} a - \frac{3353836525118154334357593222629119534278792643877218129}{135355264047422415420599915645240705150568914765757440000}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{88705224}$, which has order $4257850752$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2494653063.4840164 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-399}) \), 3.3.17689.2, 3.3.15884.1, 6.0.1123626489111.2, 6.0.44394711896304.1, 9.9.471484994327458496.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $19$ | 19.6.5.3 | $x^{6} - 4864$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.3 | $x^{6} - 4864$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.3 | $x^{6} - 4864$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |