Normalized defining polynomial
\( x^{18} + 60 x^{16} - 8 x^{15} + 2133 x^{14} - 96 x^{13} + 54990 x^{12} + 7350 x^{11} + 1056552 x^{10} + 290492 x^{9} + 15135612 x^{8} + 4958358 x^{7} + 157769068 x^{6} + 47240316 x^{5} + 1124100009 x^{4} + 248935216 x^{3} + 4850734998 x^{2} + 576974412 x + 9505772641 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1024770265180753855691096064000000000=-\,2^{27}\cdot 3^{24}\cdot 5^{9}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2520=2^{3}\cdot 3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2520}(1,·)$, $\chi_{2520}(2179,·)$, $\chi_{2520}(961,·)$, $\chi_{2520}(1801,·)$, $\chi_{2520}(2059,·)$, $\chi_{2520}(1681,·)$, $\chi_{2520}(1219,·)$, $\chi_{2520}(2041,·)$, $\chi_{2520}(1339,·)$, $\chi_{2520}(739,·)$, $\chi_{2520}(361,·)$, $\chi_{2520}(1579,·)$, $\chi_{2520}(1201,·)$, $\chi_{2520}(499,·)$, $\chi_{2520}(841,·)$, $\chi_{2520}(121,·)$, $\chi_{2520}(2419,·)$, $\chi_{2520}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{7} + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{8} + \frac{1}{4} a$, $\frac{1}{2032} a^{16} - \frac{69}{1016} a^{15} + \frac{109}{2032} a^{14} - \frac{199}{508} a^{13} + \frac{187}{1016} a^{12} - \frac{125}{254} a^{11} - \frac{77}{508} a^{10} + \frac{475}{1016} a^{9} - \frac{101}{254} a^{8} + \frac{301}{1016} a^{7} - \frac{16}{127} a^{6} + \frac{17}{254} a^{5} + \frac{47}{508} a^{4} + \frac{51}{508} a^{3} - \frac{899}{2032} a^{2} - \frac{443}{1016} a - \frac{613}{2032}$, $\frac{1}{43314292935604716832250035326731261715053987066144032449668432} a^{17} - \frac{2718035629001091436717302288321298305285944226829680284801}{21657146467802358416125017663365630857526993533072016224834216} a^{16} - \frac{3703122718004283235715028936048349051592416598552286184858283}{43314292935604716832250035326731261715053987066144032449668432} a^{15} + \frac{529790788150124271064549866712858937855352600513254970380879}{10828573233901179208062508831682815428763496766536008112417108} a^{14} - \frac{1842590491890373392891406448350850678606102933385371295529741}{21657146467802358416125017663365630857526993533072016224834216} a^{13} + \frac{1274232272415838618410017390807356417862232513438764370782551}{5414286616950589604031254415841407714381748383268004056208554} a^{12} - \frac{3222262243617279002103475684585789989909586785855151664316085}{10828573233901179208062508831682815428763496766536008112417108} a^{11} - \frac{7243038148284834591038536788456688981375392234902610312655077}{21657146467802358416125017663365630857526993533072016224834216} a^{10} - \frac{2617615238121540652454404970194515735320836861046585167046805}{5414286616950589604031254415841407714381748383268004056208554} a^{9} - \frac{9763618875315240037055649468337262544558472884973421429019883}{21657146467802358416125017663365630857526993533072016224834216} a^{8} - \frac{324853533205926219995977547838249189001692358034645170771485}{2707143308475294802015627207920703857190874191634002028104277} a^{7} + \frac{1850660269186760039090606525559487578169835330973382223624661}{5414286616950589604031254415841407714381748383268004056208554} a^{6} + \frac{810549433699932192571322952899120653335403036335342534692295}{10828573233901179208062508831682815428763496766536008112417108} a^{5} + \frac{4208929308384361105788028701807062121604607137192329177203499}{10828573233901179208062508831682815428763496766536008112417108} a^{4} - \frac{12684373940515044848928317377135233303034651695816116618360851}{43314292935604716832250035326731261715053987066144032449668432} a^{3} - \frac{60596017578869756754469138798158000966694479796823281252953}{170528712344900459969488328057997093366354279787968631691608} a^{2} - \frac{5124189671187115552029629437966568718525321295844139743051565}{43314292935604716832250035326731261715053987066144032449668432} a - \frac{388123050599164570522807505683154073222643911668937421580131}{5414286616950589604031254415841407714381748383268004056208554}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{252}\times C_{252}$, which has order $508032$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.2, 3.3.3969.1, 6.0.419904000.3, 6.0.153664000.1, 6.0.1008189504000.20, 6.0.1008189504000.19, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |