Normalized defining polynomial
\( x^{18} - 3 x^{17} - 27 x^{16} + 54 x^{15} + 354 x^{14} - 426 x^{13} - 2956 x^{12} + 1716 x^{11} + 18452 x^{10} + 7658 x^{9} - 32814 x^{8} - 114078 x^{7} + 30115 x^{6} + 394695 x^{5} + 97727 x^{4} - 771736 x^{3} + 26068 x^{2} + 309680 x + 134848 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10134905874162866002761240391083=-\,3^{9}\cdot 7^{10}\cdot 67^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{3}{16} a^{6} + \frac{1}{8} a^{4} - \frac{3}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{7} - \frac{3}{16} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} - \frac{3}{16} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{30016} a^{15} - \frac{773}{30016} a^{14} + \frac{463}{30016} a^{13} - \frac{205}{30016} a^{12} - \frac{675}{30016} a^{11} + \frac{2745}{30016} a^{10} + \frac{3043}{30016} a^{9} - \frac{2547}{30016} a^{8} - \frac{173}{4288} a^{7} - \frac{393}{4288} a^{6} - \frac{257}{30016} a^{5} + \frac{2675}{30016} a^{4} + \frac{995}{3752} a^{3} - \frac{115}{1072} a^{2} - \frac{33}{67} a - \frac{26}{67}$, $\frac{1}{5823104} a^{16} - \frac{25}{2911552} a^{15} - \frac{18133}{1455776} a^{14} + \frac{2903}{207968} a^{13} + \frac{3837}{415936} a^{12} + \frac{78005}{1455776} a^{11} + \frac{19903}{415936} a^{10} - \frac{150645}{2911552} a^{9} - \frac{39219}{727888} a^{8} - \frac{50195}{207968} a^{7} + \frac{10635}{43456} a^{6} - \frac{318273}{1455776} a^{5} - \frac{738819}{5823104} a^{4} + \frac{220441}{1455776} a^{3} - \frac{89971}{207968} a^{2} + \frac{14541}{51992} a + \frac{4853}{12998}$, $\frac{1}{274414673487933659086398185223866752} a^{17} - \frac{17796519499999246199714221483}{274414673487933659086398185223866752} a^{16} + \frac{519403345654473920509549058583}{34301834185991707385799773152983344} a^{15} + \frac{16552759786545737687670559190043}{1414508626226462160239165903215808} a^{14} + \frac{159315463578582351259492862693899}{17150917092995853692899886576491672} a^{13} + \frac{110325495162287917593618560369023}{9800524053140487824514220900852384} a^{12} - \frac{110575717922404261156868998558270}{2143864636624481711612485822061459} a^{11} + \frac{14003272039727674103139650308525819}{137207336743966829543199092611933376} a^{10} - \frac{59160188536710535169023117225781}{34301834185991707385799773152983344} a^{9} + \frac{17140497923278835909758192339700787}{137207336743966829543199092611933376} a^{8} + \frac{291615047788535860164242776798703}{8575458546497926846449943288245836} a^{7} + \frac{11866342571200019842634002310114655}{68603668371983414771599546305966688} a^{6} - \frac{4139532900104878798193522760371209}{274414673487933659086398185223866752} a^{5} - \frac{43352396239848406344132523855233051}{274414673487933659086398185223866752} a^{4} - \frac{2999084669373442222181410466165043}{8575458546497926846449943288245836} a^{3} + \frac{4599565413500768176686152924283685}{9800524053140487824514220900852384} a^{2} - \frac{215249132796489554445646890217489}{2450131013285121956128555225213096} a + \frac{189328169629205284941752306359467}{612532753321280489032138806303274}$
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{63070084499689997787}{10423054587882227395017856} a^{17} - \frac{86658308529260226485}{5211527293941113697508928} a^{16} - \frac{853965806703195287685}{5211527293941113697508928} a^{15} + \frac{1442003459319454295053}{5211527293941113697508928} a^{14} + \frac{2750692339809226946649}{1302881823485278424377232} a^{13} - \frac{10039484221963899594327}{5211527293941113697508928} a^{12} - \frac{22278914378801212976435}{1302881823485278424377232} a^{11} + \frac{14547823215578737742037}{2605763646970556848754464} a^{10} + \frac{536950199058747900668359}{5211527293941113697508928} a^{9} + \frac{365907263450373890309819}{5211527293941113697508928} a^{8} - \frac{159084510456769199338511}{1302881823485278424377232} a^{7} - \frac{3370177485543569033096669}{5211527293941113697508928} a^{6} - \frac{89408940586539597619547}{10423054587882227395017856} a^{5} + \frac{10234032071207460138334355}{5211527293941113697508928} a^{4} + \frac{2607184771854803094424141}{2605763646970556848754464} a^{3} - \frac{4363243709153271743475549}{1302881823485278424377232} a^{2} + \frac{75370685741910210491469}{162860227935659803047154} a + \frac{78214958976504701961857}{81430113967829901523577} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 448034530.39626753 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.469.1, 6.0.5938947.2, 6.0.5938947.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $67$ | 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 67.3.2.1 | $x^{3} - 67$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 67.6.5.5 | $x^{6} + 4288$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |