Normalized defining polynomial
\( x^{18} - 7 x^{17} + 147 x^{16} - 794 x^{15} + 9831 x^{14} - 44661 x^{13} + 414045 x^{12} - 1636273 x^{11} + 12151554 x^{10} - 41702360 x^{9} + 253396625 x^{8} - 736480093 x^{7} + 3673658915 x^{6} - 8598059427 x^{5} + 34867471171 x^{4} - 59468160457 x^{3} + 191099338775 x^{2} - 183041086898 x + 442378829803 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1004285770264603077807571330317567473594368=-\,2^{12}\cdot 37^{14}\cdot 67^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $215.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{14021258486649930975651181137474656032795077282431695156437980900551} a^{17} + \frac{4724702649758965902930939590882584089315117244714580156160198822936}{14021258486649930975651181137474656032795077282431695156437980900551} a^{16} + \frac{6264315351770081819333478690882880680125695767888574573212981291590}{14021258486649930975651181137474656032795077282431695156437980900551} a^{15} + \frac{4062225089965735371438936718558368903265322893499382374606209750873}{14021258486649930975651181137474656032795077282431695156437980900551} a^{14} + \frac{5396551898199599424658990135794794499581063785945090351938697832032}{14021258486649930975651181137474656032795077282431695156437980900551} a^{13} - \frac{2916563921552904869436622610349600763106424747212150447165631100103}{14021258486649930975651181137474656032795077282431695156437980900551} a^{12} - \frac{2649948315035378099477567907943574632061627094736562035808978878755}{14021258486649930975651181137474656032795077282431695156437980900551} a^{11} - \frac{3322017531107984031891900378974673332886033009720674302646878276724}{14021258486649930975651181137474656032795077282431695156437980900551} a^{10} - \frac{3872960375561036451901459171800588712325935821776409640707587231193}{14021258486649930975651181137474656032795077282431695156437980900551} a^{9} + \frac{2543974249714237227122591425827337729721097623005943218869585111941}{14021258486649930975651181137474656032795077282431695156437980900551} a^{8} - \frac{81953866397086563224441018295877475278128555465961022948857728662}{452298660859675192762941327015311484928873460723603069562515512921} a^{7} + \frac{3775768871017338750919101542125140571156137087751901888660449005878}{14021258486649930975651181137474656032795077282431695156437980900551} a^{6} - \frac{2169935368773343659361956243877373413114960789244621921119820912199}{14021258486649930975651181137474656032795077282431695156437980900551} a^{5} - \frac{5532810804806034113192947724938161865639858884976475004610474634966}{14021258486649930975651181137474656032795077282431695156437980900551} a^{4} - \frac{2104883669348524295346990859062627297610311002501812819506106034503}{14021258486649930975651181137474656032795077282431695156437980900551} a^{3} + \frac{1953416034667171959707846682332628721966027454325917435509618011806}{14021258486649930975651181137474656032795077282431695156437980900551} a^{2} + \frac{3384521547468976386118094713643388879863009586854572624145543522562}{14021258486649930975651181137474656032795077282431695156437980900551} a + \frac{6653642230706155535302966234694672450223152269929426535562564982631}{14021258486649930975651181137474656032795077282431695156437980900551}$
Class group and class number
$C_{2}\times C_{6}\times C_{18}\times C_{211302}$, which has order $45641232$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-67}) \), 3.3.1369.1, 3.3.148.1, 6.0.6587912752.4, 6.0.563678284843.4, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $67$ | 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |