Properties

Label 17.3.855...476.1
Degree $17$
Signature $[3, 7]$
Discriminant $-8.554\times 10^{21}$
Root discriminant \(19.50\)
Ramified primes $2,11,53,34759,105529138935877$
Class number $1$
Class group trivial
Galois group $S_{17}$ (as 17T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^17 - 3*x^16 + 4*x^15 + x^14 - 13*x^13 + 26*x^12 - 25*x^11 + 2*x^10 + 35*x^9 - 62*x^8 + 59*x^7 - 25*x^6 - 13*x^5 + 33*x^4 - 30*x^3 + 17*x^2 - 6*x + 1)
 
gp: K = bnfinit(y^17 - 3*y^16 + 4*y^15 + y^14 - 13*y^13 + 26*y^12 - 25*y^11 + 2*y^10 + 35*y^9 - 62*y^8 + 59*y^7 - 25*y^6 - 13*y^5 + 33*y^4 - 30*y^3 + 17*y^2 - 6*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - 3*x^16 + 4*x^15 + x^14 - 13*x^13 + 26*x^12 - 25*x^11 + 2*x^10 + 35*x^9 - 62*x^8 + 59*x^7 - 25*x^6 - 13*x^5 + 33*x^4 - 30*x^3 + 17*x^2 - 6*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - 3*x^16 + 4*x^15 + x^14 - 13*x^13 + 26*x^12 - 25*x^11 + 2*x^10 + 35*x^9 - 62*x^8 + 59*x^7 - 25*x^6 - 13*x^5 + 33*x^4 - 30*x^3 + 17*x^2 - 6*x + 1)
 

\( x^{17} - 3 x^{16} + 4 x^{15} + x^{14} - 13 x^{13} + 26 x^{12} - 25 x^{11} + 2 x^{10} + 35 x^{9} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $17$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-8553979677514650635476\) \(\medspace = -\,2^{2}\cdot 11\cdot 53\cdot 34759\cdot 105529138935877\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(19.50\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(11\), \(53\), \(34759\), \(105529138935877\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-21384\!\cdots\!58869}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11}a^{16}+\frac{5}{11}a^{15}+\frac{1}{11}a^{13}-\frac{5}{11}a^{12}-\frac{3}{11}a^{11}-\frac{5}{11}a^{10}-\frac{5}{11}a^{9}-\frac{5}{11}a^{8}-\frac{3}{11}a^{7}+\frac{2}{11}a^{6}+\frac{2}{11}a^{5}+\frac{3}{11}a^{4}+\frac{2}{11}a^{3}-\frac{3}{11}a^{2}+\frac{4}{11}a+\frac{4}{11}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $a^{16}-2a^{15}+a^{14}+4a^{13}-10a^{12}+12a^{11}-3a^{10}-13a^{9}+25a^{8}-24a^{7}+10a^{6}+9a^{5}-14a^{4}+10a^{3}-6a^{2}+a$, $\frac{21}{11}a^{16}+\frac{17}{11}a^{15}-8a^{14}+\frac{153}{11}a^{13}+\frac{5}{11}a^{12}-\frac{316}{11}a^{11}+\frac{665}{11}a^{10}-\frac{501}{11}a^{9}-\frac{149}{11}a^{8}+\frac{960}{11}a^{7}-\frac{1278}{11}a^{6}+\frac{878}{11}a^{5}+\frac{151}{11}a^{4}-\frac{596}{11}a^{3}+\frac{597}{11}a^{2}-\frac{312}{11}a+\frac{62}{11}$, $\frac{1}{11}a^{16}-\frac{6}{11}a^{15}+a^{14}-\frac{10}{11}a^{13}-\frac{16}{11}a^{12}+\frac{63}{11}a^{11}-\frac{104}{11}a^{10}+\frac{72}{11}a^{9}+\frac{39}{11}a^{8}-\frac{190}{11}a^{7}+\frac{266}{11}a^{6}-\frac{196}{11}a^{5}+\frac{25}{11}a^{4}+\frac{123}{11}a^{3}-\frac{179}{11}a^{2}+\frac{103}{11}a-\frac{29}{11}$, $\frac{15}{11}a^{16}-\frac{24}{11}a^{15}+a^{14}+\frac{59}{11}a^{13}-\frac{130}{11}a^{12}+\frac{153}{11}a^{11}-\frac{20}{11}a^{10}-\frac{174}{11}a^{9}+\frac{332}{11}a^{8}-\frac{309}{11}a^{7}+\frac{129}{11}a^{6}+\frac{118}{11}a^{5}-\frac{175}{11}a^{4}+\frac{173}{11}a^{3}-\frac{89}{11}a^{2}+\frac{38}{11}a-\frac{6}{11}$, $\frac{45}{11}a^{16}-\frac{105}{11}a^{15}+9a^{14}+\frac{133}{11}a^{13}-\frac{511}{11}a^{12}+\frac{789}{11}a^{11}-\frac{489}{11}a^{10}-\frac{379}{11}a^{9}+\frac{1370}{11}a^{8}-\frac{1752}{11}a^{7}+\frac{1212}{11}a^{6}-\frac{42}{11}a^{5}-\frac{745}{11}a^{4}+\frac{915}{11}a^{3}-\frac{608}{11}a^{2}+\frac{246}{11}a-\frac{51}{11}$, $\frac{15}{11}a^{16}-\frac{46}{11}a^{15}+5a^{14}+\frac{37}{11}a^{13}-\frac{229}{11}a^{12}+\frac{384}{11}a^{11}-\frac{273}{11}a^{10}-\frac{163}{11}a^{9}+\frac{684}{11}a^{8}-\frac{881}{11}a^{7}+\frac{569}{11}a^{6}+\frac{63}{11}a^{5}-\frac{494}{11}a^{4}+\frac{492}{11}a^{3}-\frac{210}{11}a^{2}+\frac{27}{11}a+\frac{5}{11}$, $\frac{26}{11}a^{16}-\frac{68}{11}a^{15}+7a^{14}+\frac{59}{11}a^{13}-\frac{317}{11}a^{12}+\frac{549}{11}a^{11}-\frac{427}{11}a^{10}-\frac{119}{11}a^{9}+\frac{860}{11}a^{8}-\frac{1266}{11}a^{7}+\frac{1042}{11}a^{6}-\frac{256}{11}a^{5}-\frac{428}{11}a^{4}+\frac{690}{11}a^{3}-\frac{518}{11}a^{2}+\frac{258}{11}a-\frac{61}{11}$, $\frac{5}{11}a^{16}-\frac{30}{11}a^{15}+4a^{14}-\frac{6}{11}a^{13}-\frac{124}{11}a^{12}+\frac{260}{11}a^{11}-\frac{278}{11}a^{10}+\frac{30}{11}a^{9}+\frac{349}{11}a^{8}-\frac{642}{11}a^{7}+\frac{593}{11}a^{6}-\frac{243}{11}a^{5}-\frac{194}{11}a^{4}+\frac{329}{11}a^{3}-\frac{290}{11}a^{2}+\frac{141}{11}a-\frac{35}{11}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 30334.8896134 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{7}\cdot 30334.8896134 \cdot 1}{2\cdot\sqrt{8553979677514650635476}}\cr\approx \mathstrut & 0.507197824041 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^17 - 3*x^16 + 4*x^15 + x^14 - 13*x^13 + 26*x^12 - 25*x^11 + 2*x^10 + 35*x^9 - 62*x^8 + 59*x^7 - 25*x^6 - 13*x^5 + 33*x^4 - 30*x^3 + 17*x^2 - 6*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^17 - 3*x^16 + 4*x^15 + x^14 - 13*x^13 + 26*x^12 - 25*x^11 + 2*x^10 + 35*x^9 - 62*x^8 + 59*x^7 - 25*x^6 - 13*x^5 + 33*x^4 - 30*x^3 + 17*x^2 - 6*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^17 - 3*x^16 + 4*x^15 + x^14 - 13*x^13 + 26*x^12 - 25*x^11 + 2*x^10 + 35*x^9 - 62*x^8 + 59*x^7 - 25*x^6 - 13*x^5 + 33*x^4 - 30*x^3 + 17*x^2 - 6*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - 3*x^16 + 4*x^15 + x^14 - 13*x^13 + 26*x^12 - 25*x^11 + 2*x^10 + 35*x^9 - 62*x^8 + 59*x^7 - 25*x^6 - 13*x^5 + 33*x^4 - 30*x^3 + 17*x^2 - 6*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{17}$ (as 17T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 355687428096000
The 297 conjugacy class representatives for $S_{17}$ are not computed
Character table for $S_{17}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.5.0.1}{5} }$ ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ $17$ R ${\href{/padicField/13.9.0.1}{9} }{,}\,{\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ $17$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ $16{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.7.0.1}{7} }$ ${\href{/padicField/37.13.0.1}{13} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ $17$ R ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.15.0.1$x^{15} + x^{5} + x^{4} + x^{2} + 1$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.2.0.1$x^{2} + 7 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.1$x^{2} + 22$$2$$1$$1$$C_2$$[\ ]_{2}$
11.3.0.1$x^{3} + 2 x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
11.7.0.1$x^{7} + 4 x + 9$$1$$7$$0$$C_7$$[\ ]^{7}$
\(53\) Copy content Toggle raw display 53.2.1.1$x^{2} + 53$$2$$1$$1$$C_2$$[\ ]_{2}$
53.15.0.1$x^{15} + 22 x^{6} + 31 x^{5} + 15 x^{4} + 11 x^{3} + 20 x^{2} + 4 x + 51$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(34759\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $12$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(105529138935877\) Copy content Toggle raw display $\Q_{105529138935877}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $10$$1$$10$$0$$C_{10}$$[\ ]^{10}$