Properties

Label 17.3.158...023.1
Degree $17$
Signature $[3, 7]$
Discriminant $-1.586\times 10^{18}$
Root discriminant \(11.77\)
Ramified primes $2131,546781,1361451193$
Class number $1$
Class group trivial
Galois group $S_{17}$ (as 17T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^17 - x^15 - x^14 - 5*x^13 + 4*x^12 + x^11 + 15*x^9 - 13*x^8 - 2*x^7 + 7*x^6 - 18*x^5 + 20*x^4 - 10*x^3 + 6*x^2 - 4*x + 1)
 
gp: K = bnfinit(y^17 - y^15 - y^14 - 5*y^13 + 4*y^12 + y^11 + 15*y^9 - 13*y^8 - 2*y^7 + 7*y^6 - 18*y^5 + 20*y^4 - 10*y^3 + 6*y^2 - 4*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - x^15 - x^14 - 5*x^13 + 4*x^12 + x^11 + 15*x^9 - 13*x^8 - 2*x^7 + 7*x^6 - 18*x^5 + 20*x^4 - 10*x^3 + 6*x^2 - 4*x + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^17 - x^15 - x^14 - 5*x^13 + 4*x^12 + x^11 + 15*x^9 - 13*x^8 - 2*x^7 + 7*x^6 - 18*x^5 + 20*x^4 - 10*x^3 + 6*x^2 - 4*x + 1)
 

\( x^{17} - x^{15} - x^{14} - 5 x^{13} + 4 x^{12} + x^{11} + 15 x^{9} - 13 x^{8} - 2 x^{7} + 7 x^{6} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $17$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-1586349738982991023\) \(\medspace = -\,2131\cdot 546781\cdot 1361451193\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(11.77\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2131^{1/2}546781^{1/2}1361451193^{1/2}\approx 1259503766.9586349$
Ramified primes:   \(2131\), \(546781\), \(1361451193\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-15863\!\cdots\!91023}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{55463}a^{16}-\frac{19341}{55463}a^{15}-\frac{23655}{55463}a^{14}-\frac{2933}{55463}a^{13}-\frac{11501}{55463}a^{12}-\frac{21248}{55463}a^{11}-\frac{23261}{55463}a^{10}-\frac{24855}{55463}a^{9}+\frac{22749}{55463}a^{8}-\frac{443}{55463}a^{7}+\frac{26759}{55463}a^{6}-\frac{20559}{55463}a^{5}+\frac{17354}{55463}a^{4}+\frac{18382}{55463}a^{3}-\frac{8442}{55463}a^{2}-\frac{6344}{55463}a+\frac{15144}{55463}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $\frac{3313505}{55463}a^{16}+\frac{1883703}{55463}a^{15}-\frac{2257602}{55463}a^{14}-\frac{4609419}{55463}a^{13}-\frac{19183903}{55463}a^{12}+\frac{2372962}{55463}a^{11}+\frac{4763612}{55463}a^{10}+\frac{2726001}{55463}a^{9}+\frac{51241702}{55463}a^{8}-\frac{13975633}{55463}a^{7}-\frac{14819665}{55463}a^{6}+\frac{14778150}{55463}a^{5}-\frac{51222941}{55463}a^{4}+\frac{37097150}{55463}a^{3}-\frac{11769705}{55463}a^{2}+\frac{13023326}{55463}a-\frac{5809441}{55463}$, $\frac{531044}{55463}a^{16}+\frac{381892}{55463}a^{15}-\frac{252802}{55463}a^{14}-\frac{705642}{55463}a^{13}-\frac{3168338}{55463}a^{12}-\frac{174729}{55463}a^{11}+\frac{382191}{55463}a^{10}+\frac{263435}{55463}a^{9}+\frac{8199672}{55463}a^{8}-\frac{976780}{55463}a^{7}-\frac{1743650}{55463}a^{6}+\frac{2542863}{55463}a^{5}-\frac{7814787}{55463}a^{4}+\frac{4932626}{55463}a^{3}-\frac{1718511}{55463}a^{2}+\frac{1876152}{55463}a-\frac{725683}{55463}$, $\frac{1690022}{55463}a^{16}+\frac{1013641}{55463}a^{15}-\frac{1071122}{55463}a^{14}-\frac{2324736}{55463}a^{13}-\frac{9862549}{55463}a^{12}+\frac{819302}{55463}a^{11}+\frac{2125622}{55463}a^{10}+\frac{1291982}{55463}a^{9}+\frac{26202970}{55463}a^{8}-\frac{6252028}{55463}a^{7}-\frac{6999654}{55463}a^{6}+\frac{7620724}{55463}a^{5}-\frac{26038370}{55463}a^{4}+\frac{18240708}{55463}a^{3}-\frac{6019997}{55463}a^{2}+\frac{6542133}{55463}a-\frac{2758647}{55463}$, $\frac{3709248}{55463}a^{16}+\frac{2156044}{55463}a^{15}-\frac{2457664}{55463}a^{14}-\frac{5148604}{55463}a^{13}-\frac{21548886}{55463}a^{12}+\frac{2315665}{55463}a^{11}+\frac{5078966}{55463}a^{10}+\frac{3007712}{55463}a^{9}+\frac{57401442}{55463}a^{8}-\frac{14858647}{55463}a^{7}-\frac{16069893}{55463}a^{6}+\frac{16506488}{55463}a^{5}-\frac{57194898}{55463}a^{4}+\frac{40944843}{55463}a^{3}-\frac{13315807}{55463}a^{2}+\frac{14570856}{55463}a-\frac{6397470}{55463}$, $\frac{1181405}{55463}a^{16}+\frac{647265}{55463}a^{15}-\frac{825410}{55463}a^{14}-\frac{1618367}{55463}a^{13}-\frac{6779651}{55463}a^{12}+\frac{1003231}{55463}a^{11}+\frac{1698499}{55463}a^{10}+\frac{842223}{55463}a^{9}+\frac{18157373}{55463}a^{8}-\frac{5393458}{55463}a^{7}-\frac{5297034}{55463}a^{6}+\frac{5564254}{55463}a^{5}-\frac{18153833}{55463}a^{4}+\frac{13637495}{55463}a^{3}-\frac{4279538}{55463}a^{2}+\frac{4596225}{55463}a-\frac{2164814}{55463}$, $\frac{46194}{1499}a^{16}+\frac{25806}{1499}a^{15}-\frac{32014}{1499}a^{14}-\frac{64344}{1499}a^{13}-\frac{266937}{1499}a^{12}+\frac{36074}{1499}a^{11}+\frac{67997}{1499}a^{10}+\frac{38659}{1499}a^{9}+\frac{714375}{1499}a^{8}-\frac{201959}{1499}a^{7}-\frac{208495}{1499}a^{6}+\frac{206359}{1499}a^{5}-\frac{716056}{1499}a^{4}+\frac{522729}{1499}a^{3}-\frac{166790}{1499}a^{2}+\frac{182642}{1499}a-\frac{82823}{1499}$, $\frac{1969398}{55463}a^{16}+\frac{1140663}{55463}a^{15}-\frac{1293952}{55463}a^{14}-\frac{2712423}{55463}a^{13}-\frac{11436373}{55463}a^{12}+\frac{1231185}{55463}a^{11}+\frac{2603900}{55463}a^{10}+\frac{1535491}{55463}a^{9}+\frac{30493075}{55463}a^{8}-\frac{7941533}{55463}a^{7}-\frac{8310689}{55463}a^{6}+\frac{8898006}{55463}a^{5}-\frac{30482451}{55463}a^{4}+\frac{21849876}{55463}a^{3}-\frac{7279226}{55463}a^{2}+\frac{7721140}{55463}a-\frac{3327162}{55463}$, $\frac{2378614}{55463}a^{16}+\frac{1341422}{55463}a^{15}-\frac{1618357}{55463}a^{14}-\frac{3278261}{55463}a^{13}-\frac{13735244}{55463}a^{12}+\frac{1754220}{55463}a^{11}+\frac{3333455}{55463}a^{10}+\frac{1831381}{55463}a^{9}+\frac{36717017}{55463}a^{8}-\frac{10189657}{55463}a^{7}-\frac{10489281}{55463}a^{6}+\frac{10839011}{55463}a^{5}-\frac{36697826}{55463}a^{4}+\frac{26825220}{55463}a^{3}-\frac{8587929}{55463}a^{2}+\frac{9375367}{55463}a-\frac{4205771}{55463}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 130.579387289 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{7}\cdot 130.579387289 \cdot 1}{2\cdot\sqrt{1586349738982991023}}\cr\approx \mathstrut & 0.160322407384 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^17 - x^15 - x^14 - 5*x^13 + 4*x^12 + x^11 + 15*x^9 - 13*x^8 - 2*x^7 + 7*x^6 - 18*x^5 + 20*x^4 - 10*x^3 + 6*x^2 - 4*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^17 - x^15 - x^14 - 5*x^13 + 4*x^12 + x^11 + 15*x^9 - 13*x^8 - 2*x^7 + 7*x^6 - 18*x^5 + 20*x^4 - 10*x^3 + 6*x^2 - 4*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^17 - x^15 - x^14 - 5*x^13 + 4*x^12 + x^11 + 15*x^9 - 13*x^8 - 2*x^7 + 7*x^6 - 18*x^5 + 20*x^4 - 10*x^3 + 6*x^2 - 4*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - x^15 - x^14 - 5*x^13 + 4*x^12 + x^11 + 15*x^9 - 13*x^8 - 2*x^7 + 7*x^6 - 18*x^5 + 20*x^4 - 10*x^3 + 6*x^2 - 4*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{17}$ (as 17T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 355687428096000
The 297 conjugacy class representatives for $S_{17}$
Character table for $S_{17}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $17$ ${\href{/padicField/3.13.0.1}{13} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.5.0.1}{5} }$ ${\href{/padicField/7.9.0.1}{9} }{,}\,{\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ $17$ ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.5.0.1}{5} }$ ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.5.0.1}{5} }$ $17$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.13.0.1}{13} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ $15{,}\,{\href{/padicField/41.2.0.1}{2} }$ $17$ ${\href{/padicField/47.11.0.1}{11} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ $17$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2131\) Copy content Toggle raw display $\Q_{2131}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2131}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2131}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
\(546781\) Copy content Toggle raw display $\Q_{546781}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $10$$1$$10$$0$$C_{10}$$[\ ]^{10}$
\(1361451193\) Copy content Toggle raw display $\Q_{1361451193}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $11$$1$$11$$0$$C_{11}$$[\ ]^{11}$