Normalized defining polynomial
\( x^{17} - x^{16} - 304 x^{15} + 1117 x^{14} + 25631 x^{13} - 126439 x^{12} - 773932 x^{11} + 4360454 x^{10} + 10731832 x^{9} - 64676368 x^{8} - 79260104 x^{7} + 441919082 x^{6} + 345306489 x^{5} - 1259087517 x^{4} - 718017711 x^{3} + 1025767171 x^{2} + 183044979 x - 202031659 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(942906198449660107953222334097149309547713921=647^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $442.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $647$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(647\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{647}(1,·)$, $\chi_{647}(67,·)$, $\chi_{647}(43,·)$, $\chi_{647}(338,·)$, $\chi_{647}(468,·)$, $\chi_{647}(218,·)$, $\chi_{647}(221,·)$, $\chi_{647}(607,·)$, $\chi_{647}(293,·)$, $\chi_{647}(555,·)$, $\chi_{647}(300,·)$, $\chi_{647}(445,·)$, $\chi_{647}(306,·)$, $\chi_{647}(372,·)$, $\chi_{647}(53,·)$, $\chi_{647}(316,·)$, $\chi_{647}(573,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{103} a^{15} + \frac{45}{103} a^{14} - \frac{44}{103} a^{13} + \frac{43}{103} a^{12} + \frac{26}{103} a^{11} + \frac{43}{103} a^{10} + \frac{42}{103} a^{9} - \frac{38}{103} a^{8} - \frac{50}{103} a^{7} - \frac{48}{103} a^{6} - \frac{38}{103} a^{5} + \frac{5}{103} a^{4} + \frac{19}{103} a^{3} - \frac{3}{103} a^{2} + \frac{4}{103} a + \frac{8}{103}$, $\frac{1}{256860718724382658659069918106208027102789930572168874892652530311353} a^{16} - \frac{496156101747711740983172947036840801004373889865550196133402660601}{256860718724382658659069918106208027102789930572168874892652530311353} a^{15} + \frac{119840133788028729650097465122796989434321789806489959071421541397329}{256860718724382658659069918106208027102789930572168874892652530311353} a^{14} + \frac{59565544128600009299174286056009340253429714400238813841997824641829}{256860718724382658659069918106208027102789930572168874892652530311353} a^{13} - \frac{38407772859810279891134275860971601990802549947438121342002077089927}{256860718724382658659069918106208027102789930572168874892652530311353} a^{12} + \frac{18665168850810421848465086581377401316666231326464006197893856144602}{256860718724382658659069918106208027102789930572168874892652530311353} a^{11} + \frac{77861906509275191632862970196698574135329982887681266730857003117388}{256860718724382658659069918106208027102789930572168874892652530311353} a^{10} - \frac{86382441131314450162937361313822463615688364197192660028290811634148}{256860718724382658659069918106208027102789930572168874892652530311353} a^{9} + \frac{91956963248189986842367444751714873668434464651431434976729909910300}{256860718724382658659069918106208027102789930572168874892652530311353} a^{8} - \frac{74757742596651988997167279586962097350749195581446310149026902705740}{256860718724382658659069918106208027102789930572168874892652530311353} a^{7} + \frac{46534035709489505122052958003314552571750621371702321245908779065865}{256860718724382658659069918106208027102789930572168874892652530311353} a^{6} - \frac{55771697231757247364509269110594803091867128802283566168528504382266}{256860718724382658659069918106208027102789930572168874892652530311353} a^{5} - \frac{12220234121382698425255886212043245138168776389504676852062817131287}{256860718724382658659069918106208027102789930572168874892652530311353} a^{4} + \frac{66337800212460881088829105723246624679473159706850557153949831028145}{256860718724382658659069918106208027102789930572168874892652530311353} a^{3} - \frac{77997832158892012037925266117373147568142471760309983181563864463868}{256860718724382658659069918106208027102789930572168874892652530311353} a^{2} + \frac{115480062230345227915278322696002774907561558360554575376789811752032}{256860718724382658659069918106208027102789930572168874892652530311353} a + \frac{46692290860360856853276351168765539760150890798518272608106086814458}{256860718724382658659069918106208027102789930572168874892652530311353}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53927069890502120 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 17 |
| The 17 conjugacy class representatives for $C_{17}$ |
| Character table for $C_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 647 | Data not computed | ||||||