Normalized defining polynomial
\( x^{17} - 4 x^{16} - 476 x^{15} + 3026 x^{14} + 82996 x^{13} - 736812 x^{12} - 6121180 x^{11} + 80531352 x^{10} + 108448584 x^{9} - 4267795762 x^{8} + 9723361580 x^{7} + 95353221324 x^{6} - 524744382701 x^{5} - 7660737412 x^{4} + 6800548404356 x^{3} - 21491689501032 x^{2} + 27480501953536 x - 12878683864992 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8972555039016074378226050552414591426720707963201=17^{12}\cdot 137^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $757.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} + \frac{3}{16} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{5}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{11} + \frac{1}{16} a^{10} - \frac{1}{8} a^{9} + \frac{3}{16} a^{7} + \frac{1}{8} a^{5} + \frac{3}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{13} + \frac{1}{48} a^{12} + \frac{1}{48} a^{11} - \frac{1}{48} a^{10} + \frac{5}{48} a^{9} - \frac{5}{48} a^{8} - \frac{11}{48} a^{7} - \frac{5}{48} a^{6} - \frac{5}{48} a^{5} - \frac{11}{48} a^{4} - \frac{1}{48} a^{3} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{288} a^{15} + \frac{1}{48} a^{13} + \frac{1}{36} a^{12} - \frac{1}{24} a^{11} - \frac{13}{144} a^{10} + \frac{1}{48} a^{9} - \frac{1}{18} a^{8} + \frac{13}{144} a^{7} + \frac{1}{9} a^{6} - \frac{1}{72} a^{5} + \frac{11}{48} a^{4} + \frac{89}{288} a^{3} + \frac{7}{18} a^{2} + \frac{17}{36} a + \frac{1}{4}$, $\frac{1}{702898237230931617154238730367736828358829109072467274370816} a^{16} + \frac{32712467553338663169238444540711338524251803387138527399}{351449118615465808577119365183868414179414554536233637185408} a^{15} - \frac{19576155863968144443343475124759506635160576147866662187}{14643713275644408690713306882661183924142273105676401549392} a^{14} + \frac{5050452187901756458867026907682813766647772317221281325177}{351449118615465808577119365183868414179414554536233637185408} a^{13} - \frac{2655837026747541801719505830599481514135454207166800233773}{87862279653866452144279841295967103544853638634058409296352} a^{12} - \frac{4485894281101177567687423000563714702945775572870844166603}{175724559307732904288559682591934207089707277268116818592704} a^{11} - \frac{11980197617316673477695110286747764789850499030202888206949}{175724559307732904288559682591934207089707277268116818592704} a^{10} + \frac{4758005646516582653220412517731282478920842843859631617199}{43931139826933226072139920647983551772426819317029204648176} a^{9} + \frac{10587122231105403807859820161717022602147768434642236327483}{87862279653866452144279841295967103544853638634058409296352} a^{8} + \frac{2684612057836492379554504608946242647854696308340132467935}{351449118615465808577119365183868414179414554536233637185408} a^{7} - \frac{14269928511606052314695219115055537643267878525844428514923}{87862279653866452144279841295967103544853638634058409296352} a^{6} - \frac{40073300534771204530800398696446644049995647538682459894141}{175724559307732904288559682591934207089707277268116818592704} a^{5} - \frac{175372745835932842751734148300011597733152907668868132127733}{702898237230931617154238730367736828358829109072467274370816} a^{4} - \frac{36646196222464461617893563949485628366570430111922839838197}{117149706205155269525706455061289471393138184845411212395136} a^{3} + \frac{9841243936800494943081857707577077550732650480484458493917}{87862279653866452144279841295967103544853638634058409296352} a^{2} + \frac{20431418805512748947193285495992321465283197110882072004669}{87862279653866452144279841295967103544853638634058409296352} a + \frac{596212624291383251180088179506608605788893823622093632655}{1627079252849378743412589653629020436015808122852933505488}$
Class group and class number
$C_{17}$, which has order $17$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31945964915800000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_{17}.C_2$ (as 17T3):
| A solvable group of order 68 |
| The 8 conjugacy class representatives for $C_{17}:C_{4}$ |
| Character table for $C_{17}:C_{4}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $17$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $17$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 137 | Data not computed | ||||||