Normalized defining polynomial
\( x^{17} - x^{16} - 144 x^{15} + 241 x^{14} + 6894 x^{13} - 14938 x^{12} - 127923 x^{11} + 323969 x^{10} + 847982 x^{9} - 2194186 x^{8} - 2617873 x^{7} + 6091397 x^{6} + 3745755 x^{5} - 7069429 x^{4} - 1600190 x^{3} + 3100257 x^{2} - 220118 x - 208777 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6226070121392010397563990173530787496001=307^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $219.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $307$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(307\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{307}(64,·)$, $\chi_{307}(1,·)$, $\chi_{307}(235,·)$, $\chi_{307}(9,·)$, $\chi_{307}(269,·)$, $\chi_{307}(272,·)$, $\chi_{307}(81,·)$, $\chi_{307}(24,·)$, $\chi_{307}(216,·)$, $\chi_{307}(280,·)$, $\chi_{307}(102,·)$, $\chi_{307}(273,·)$, $\chi_{307}(105,·)$, $\chi_{307}(299,·)$, $\chi_{307}(304,·)$, $\chi_{307}(114,·)$, $\chi_{307}(115,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} - \frac{8}{17} a^{10} + \frac{6}{17} a^{9} - \frac{1}{17} a^{8} - \frac{6}{17} a^{7} + \frac{3}{17} a^{6} + \frac{3}{17} a^{5} + \frac{1}{17} a^{4} + \frac{5}{17} a^{3} + \frac{6}{17} a^{2} + \frac{7}{17} a$, $\frac{1}{17} a^{13} - \frac{8}{17} a^{11} + \frac{6}{17} a^{10} - \frac{1}{17} a^{9} - \frac{6}{17} a^{8} + \frac{3}{17} a^{7} + \frac{3}{17} a^{6} + \frac{1}{17} a^{5} + \frac{5}{17} a^{4} + \frac{6}{17} a^{3} + \frac{7}{17} a^{2}$, $\frac{1}{901} a^{14} + \frac{25}{901} a^{13} - \frac{22}{901} a^{12} - \frac{7}{901} a^{11} - \frac{368}{901} a^{10} - \frac{285}{901} a^{9} + \frac{343}{901} a^{8} - \frac{178}{901} a^{7} + \frac{9}{53} a^{6} - \frac{114}{901} a^{5} - \frac{223}{901} a^{4} - \frac{355}{901} a^{3} - \frac{334}{901} a^{2} - \frac{30}{901} a + \frac{16}{53}$, $\frac{1}{901} a^{15} - \frac{11}{901} a^{13} + \frac{13}{901} a^{12} + \frac{125}{901} a^{11} - \frac{148}{901} a^{10} + \frac{48}{901} a^{9} - \frac{326}{901} a^{8} - \frac{220}{901} a^{7} - \frac{1}{53} a^{6} - \frac{129}{901} a^{5} - \frac{239}{901} a^{4} - \frac{12}{53} a^{3} - \frac{319}{901} a^{2} + \frac{15}{901} a + \frac{24}{53}$, $\frac{1}{6816521125182246159892694805163172837636879} a^{16} + \frac{2231368591320755466041376900885797066639}{6816521125182246159892694805163172837636879} a^{15} - \frac{500333047000286329477108482550244335860}{6816521125182246159892694805163172837636879} a^{14} + \frac{55820581008783809266382689734368151936425}{6816521125182246159892694805163172837636879} a^{13} + \frac{2894858803101190061009160635631828899164}{400971830893073303523099694421363108096287} a^{12} - \frac{2598196033489025939295318846091865418199883}{6816521125182246159892694805163172837636879} a^{11} + \frac{1807219679477676899241858792787053082720252}{6816521125182246159892694805163172837636879} a^{10} + \frac{1018014402928191491463464901067634783503503}{6816521125182246159892694805163172837636879} a^{9} + \frac{2723057339438563782143475190023639129651}{23586578287827841383711746730668418123311} a^{8} + \frac{339518509285383410198726778518476145810290}{6816521125182246159892694805163172837636879} a^{7} - \frac{1696497716458566781620601737999050018967381}{6816521125182246159892694805163172837636879} a^{6} + \frac{1173820640763274430634014690606032972730154}{6816521125182246159892694805163172837636879} a^{5} - \frac{182205103760111242159031364634130275701569}{400971830893073303523099694421363108096287} a^{4} + \frac{3169872267193071251956574700156738488118130}{6816521125182246159892694805163172837636879} a^{3} + \frac{642101989083470476722169554445476659623315}{6816521125182246159892694805163172837636879} a^{2} + \frac{58769020800320775578643900216631338524192}{6816521125182246159892694805163172837636879} a + \frac{107407058929814357173394846538108238027632}{400971830893073303523099694421363108096287}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 501600232257889.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 17 |
| The 17 conjugacy class representatives for $C_{17}$ |
| Character table for $C_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{17}$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{17}$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 307 | Data not computed | ||||||