Normalized defining polynomial
\( x^{17} - x^{16} - 192 x^{15} + 273 x^{14} + 14752 x^{13} - 28028 x^{12} - 571107 x^{11} + 1411675 x^{10} + 11275657 x^{9} - 36814399 x^{8} - 91832077 x^{7} + 461179352 x^{6} - 109192148 x^{5} - 1929139488 x^{4} + 3679722325 x^{3} - 2767754010 x^{2} + 828153361 x - 45886883 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(613158747081871736694796283376344205805441=409^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $287.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $409$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(409\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{409}(1,·)$, $\chi_{409}(5,·)$, $\chi_{409}(262,·)$, $\chi_{409}(82,·)$, $\chi_{409}(83,·)$, $\chi_{409}(341,·)$, $\chi_{409}(150,·)$, $\chi_{409}(89,·)$, $\chi_{409}(216,·)$, $\chi_{409}(345,·)$, $\chi_{409}(25,·)$, $\chi_{409}(30,·)$, $\chi_{409}(69,·)$, $\chi_{409}(36,·)$, $\chi_{409}(6,·)$, $\chi_{409}(180,·)$, $\chi_{409}(125,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{49} a^{11} - \frac{2}{49} a^{10} + \frac{3}{49} a^{9} + \frac{3}{49} a^{7} - \frac{1}{49} a^{6} - \frac{24}{49} a^{5} + \frac{5}{49} a^{4} - \frac{4}{49} a^{3} - \frac{23}{49} a^{2}$, $\frac{1}{49} a^{12} - \frac{1}{49} a^{10} - \frac{1}{49} a^{9} + \frac{3}{49} a^{8} - \frac{2}{49} a^{7} + \frac{2}{49} a^{6} + \frac{13}{49} a^{5} + \frac{20}{49} a^{4} + \frac{4}{49} a^{3} + \frac{10}{49} a^{2} + \frac{3}{7} a$, $\frac{1}{2597} a^{13} + \frac{9}{2597} a^{12} + \frac{24}{2597} a^{11} - \frac{88}{2597} a^{10} - \frac{36}{2597} a^{9} + \frac{46}{2597} a^{8} - \frac{60}{2597} a^{7} + \frac{139}{2597} a^{6} + \frac{930}{2597} a^{5} - \frac{1287}{2597} a^{4} - \frac{208}{2597} a^{3} - \frac{268}{2597} a^{2} + \frac{92}{371} a - \frac{12}{53}$, $\frac{1}{18179} a^{14} - \frac{2}{18179} a^{13} - \frac{181}{18179} a^{12} - \frac{87}{18179} a^{11} + \frac{508}{18179} a^{10} + \frac{230}{18179} a^{9} - \frac{1255}{18179} a^{8} + \frac{99}{2597} a^{7} - \frac{705}{18179} a^{6} + \frac{2263}{18179} a^{5} - \frac{8735}{18179} a^{4} - \frac{577}{18179} a^{3} + \frac{3}{371} a^{2} + \frac{116}{371} a - \frac{19}{53}$, $\frac{1}{563549} a^{15} - \frac{9}{563549} a^{14} + \frac{85}{563549} a^{13} + \frac{1964}{563549} a^{12} - \frac{4336}{563549} a^{11} - \frac{16598}{563549} a^{10} - \frac{780}{18179} a^{9} + \frac{4229}{80507} a^{8} - \frac{13256}{563549} a^{7} + \frac{27386}{563549} a^{6} + \frac{201622}{563549} a^{5} + \frac{207414}{563549} a^{4} + \frac{55}{1519} a^{3} - \frac{38981}{80507} a^{2} + \frac{5335}{11501} a + \frac{443}{1643}$, $\frac{1}{282699425718873155283472558703117231069} a^{16} + \frac{3544656702612517850087507460521}{5333951428657984061952312428360702473} a^{15} + \frac{5397731127376526300667479784851404}{282699425718873155283472558703117231069} a^{14} + \frac{12266261588774916416845680363691109}{282699425718873155283472558703117231069} a^{13} + \frac{10641153046109385654558302222496531}{40385632245553307897638936957588175867} a^{12} + \frac{258773583121534663091721287352443145}{40385632245553307897638936957588175867} a^{11} - \frac{13076393434711740810791668573891579825}{282699425718873155283472558703117231069} a^{10} + \frac{1425914202246592967548147414844745074}{40385632245553307897638936957588175867} a^{9} + \frac{13723422051701087307874808136458185188}{282699425718873155283472558703117231069} a^{8} + \frac{9919500033399828362837361311197855770}{282699425718873155283472558703117231069} a^{7} - \frac{12762040566332437011325937303880339963}{282699425718873155283472558703117231069} a^{6} + \frac{70292445580843796500114508700554471722}{282699425718873155283472558703117231069} a^{5} - \frac{48046229527817108245110205994777379869}{282699425718873155283472558703117231069} a^{4} + \frac{63512512227237474720255830491298894958}{282699425718873155283472558703117231069} a^{3} - \frac{17213371481712910295918213340363931048}{40385632245553307897638936957588175867} a^{2} + \frac{28391457980761070100704265442831708}{108856151605264980856169641395116377} a + \frac{393524537959119858509142437334529947}{824196576439863426482427284848738283}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37559948173498540 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 17 |
| The 17 conjugacy class representatives for $C_{17}$ |
| Character table for $C_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{17}$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{17}$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{17}$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 409 | Data not computed | ||||||