Normalized defining polynomial
\( x^{17} - 3502 x^{15} - 21012 x^{14} + 3586048 x^{13} + 27140500 x^{12} - 1455974010 x^{11} - 13391942168 x^{10} + 247158969538 x^{9} + 2699830692822 x^{8} - 15367054046543 x^{7} - 210262575924428 x^{6} + 207808365630713 x^{5} + 5600534069106679 x^{4} + 891648638079425 x^{3} - 50160692092741008 x^{2} - 11309428987726617 x + 145001801906376687 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(54471546860208560987402602575661525149433755592659973376605441=17^{24}\cdot 103^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $4280.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{45} a^{10} + \frac{1}{45} a^{9} + \frac{1}{15} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{45} a^{5} + \frac{11}{45} a^{4} - \frac{2}{9} a^{2} - \frac{1}{3} a + \frac{2}{5}$, $\frac{1}{45} a^{11} + \frac{2}{45} a^{9} + \frac{2}{45} a^{8} - \frac{4}{45} a^{6} + \frac{2}{9} a^{5} - \frac{11}{45} a^{4} - \frac{2}{9} a^{3} - \frac{1}{9} a^{2} - \frac{4}{15} a - \frac{2}{5}$, $\frac{1}{45} a^{12} - \frac{2}{15} a^{8} + \frac{1}{45} a^{7} + \frac{17}{45} a^{5} - \frac{2}{45} a^{4} + \frac{2}{9} a^{3} - \frac{7}{45} a^{2} + \frac{4}{15} a + \frac{1}{5}$, $\frac{1}{225} a^{13} - \frac{1}{225} a^{12} - \frac{2}{225} a^{11} + \frac{4}{45} a^{9} - \frac{3}{25} a^{8} + \frac{14}{225} a^{7} - \frac{4}{45} a^{6} + \frac{37}{75} a^{5} - \frac{26}{225} a^{4} - \frac{4}{75} a^{3} + \frac{29}{225} a^{2} + \frac{22}{75} a + \frac{8}{25}$, $\frac{1}{3375} a^{14} - \frac{7}{3375} a^{13} + \frac{14}{3375} a^{12} + \frac{37}{3375} a^{11} - \frac{2}{675} a^{10} - \frac{352}{3375} a^{9} + \frac{526}{3375} a^{8} - \frac{544}{3375} a^{7} - \frac{469}{3375} a^{6} + \frac{223}{3375} a^{5} + \frac{1169}{3375} a^{4} + \frac{1676}{3375} a^{3} - \frac{39}{125} a^{2} + \frac{94}{375} a - \frac{16}{125}$, $\frac{1}{16875} a^{15} + \frac{2}{16875} a^{14} + \frac{26}{16875} a^{13} + \frac{88}{16875} a^{12} + \frac{98}{16875} a^{11} - \frac{67}{16875} a^{10} + \frac{1333}{16875} a^{9} - \frac{272}{3375} a^{8} + \frac{412}{3375} a^{7} + \frac{1177}{16875} a^{6} - \frac{5749}{16875} a^{5} + \frac{2822}{16875} a^{4} + \frac{877}{5625} a^{3} - \frac{277}{5625} a^{2} - \frac{309}{625} a - \frac{144}{625}$, $\frac{1}{3420164651005107976242174131485706443429902671493636348229258523199400363613519210078427912415620260468501050828125} a^{16} - \frac{59301864057608479588155214129161309398109402504469243903048459252070711467110530025863598305005125520570520539}{3420164651005107976242174131485706443429902671493636348229258523199400363613519210078427912415620260468501050828125} a^{15} + \frac{4762859378743631305709004733850287648536824197207334594379659692059830430649978460654512645538157710453567349}{42224254950680345385705853475132178313949415697452300595422944730856794612512582840474418671797780993438284578125} a^{14} - \frac{74791389248521607560182547313724931771238304362693895244418237792906341275041152171839299777792629471276166838}{42224254950680345385705853475132178313949415697452300595422944730856794612512582840474418671797780993438284578125} a^{13} - \frac{4865856299279613945300602117156978009136324846221500244282170411465839697908430764958703684382168106493140366717}{684032930201021595248434826297141288685980534298727269645851704639880072722703842015685582483124052093700210165625} a^{12} - \frac{566007001685041288096395566320192926910443346201658721590195997947952670448619780091629628664332148360945186068}{76003658911224621694270536255237920965108948255414141071761300515542230302522649112853953609236005788188912240625} a^{11} - \frac{17937467450558016853866382653289498257746475699853875822069758691621063151107401700840971717675396204206074953}{228010976733673865082811608765713762895326844766242423215283901546626690907567947338561860827708017364566736721875} a^{10} - \frac{5062602113669242254583701692472524188511975398716619441458687895958270171887740230989606264620251334423794290318}{83418650024514828688833515402090401059265918816917959712908744468278057649110224636059217375990738060207342703125} a^{9} - \frac{4295714773828671315492625585878392528183573668005025960021282824197838373587167287792447754415225330204064227169}{76003658911224621694270536255237920965108948255414141071761300515542230302522649112853953609236005788188912240625} a^{8} + \frac{11578371552390853269457220336862838350218581461494065129296599005194904068919133342388942167017014505374134303338}{380018294556123108471352681276189604825544741277070705358806502577711151512613245564269768046180028940944561203125} a^{7} - \frac{1144290542987826644847326707558322445036691373155886031457043087668678061062615163901813289850163798890171551033}{8403352950872501170128191969252349983857254721114585622184910376411303104701521400684098064903243883214990296875} a^{6} - \frac{85057190170096016120563749037830258727002903371782371732829627427716895578186334047804150976804273148101209517291}{380018294556123108471352681276189604825544741277070705358806502577711151512613245564269768046180028940944561203125} a^{5} - \frac{44487106555716522557136585970305748534744627834737381158374764042160223651751302985783455906050122571546800188308}{92436882459597512871410111661775849822429801932260441844034014140524334151716735407525078713935682715364893265625} a^{4} + \frac{139691058249242896163096374353297396206608603077961614752644775064703711206984653009856183311536819802839693980248}{3420164651005107976242174131485706443429902671493636348229258523199400363613519210078427912415620260468501050828125} a^{3} + \frac{288439206667624103593899111996191804273956882635285542185222404028134208720302093193206417781745922301448166871126}{1140054883668369325414058043828568814476634223831212116076419507733133454537839736692809304138540086822833683609375} a^{2} - \frac{92714524205317572722850708282263228533361739423603780028433906587702585531841939952894210969409063042796242837}{202676423763265657851388096680634455906957195347771042858030134708112614140060397634277209624629348768503765975} a - \frac{56699442897797081306036086830689971718293833877471187368271106998129936832162942681560560305060722134165211592296}{126672764852041036157117560425396534941848247092356901786268834192570383837537748521423256015393342980314853734375}$
Class group and class number
$C_{17}$, which has order $17$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10720674608800000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 34 |
| The 10 conjugacy class representatives for $D_{17}$ |
| Character table for $D_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $17$ | R | $17$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $17$ | $17$ | $17$ | $17$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 103 | Data not computed | ||||||