Normalized defining polynomial
\(x^{17} - x^{16} - 288 x^{15} + 265 x^{14} + 26034 x^{13} - 40228 x^{12} - 875968 x^{11} + 2022008 x^{10} + 8464009 x^{9} - 27681440 x^{8} - 8855367 x^{7} + 101412811 x^{6} - 87313302 x^{5} - 38624139 x^{4} + 67164168 x^{3} - 7149746 x^{2} - 7878215 x - 664471\)
Invariants
Degree: | $17$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[17, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(397527879693854754943959770157821268619247041\)\(\medspace = 613^{16}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $420.23$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $613$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $17$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(613\) | ||
Dirichlet character group: | $\lbrace$$\chi_{613}(1,·)$, $\chi_{613}(387,·)$, $\chi_{613}(197,·)$, $\chi_{613}(198,·)$, $\chi_{613}(583,·)$, $\chi_{613}(585,·)$, $\chi_{613}(586,·)$, $\chi_{613}(143,·)$, $\chi_{613}(220,·)$, $\chi_{613}(287,·)$, $\chi_{613}(546,·)$, $\chi_{613}(227,·)$, $\chi_{613}(37,·)$, $\chi_{613}(171,·)$, $\chi_{613}(430,·)$, $\chi_{613}(116,·)$, $\chi_{613}(190,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{83} a^{15} - \frac{17}{83} a^{14} + \frac{3}{83} a^{13} - \frac{23}{83} a^{12} - \frac{18}{83} a^{11} - \frac{39}{83} a^{10} - \frac{36}{83} a^{9} - \frac{37}{83} a^{8} - \frac{8}{83} a^{7} - \frac{21}{83} a^{6} + \frac{4}{83} a^{5} - \frac{40}{83} a^{4} + \frac{11}{83} a^{3} - \frac{29}{83} a^{2} - \frac{4}{83} a - \frac{32}{83}$, $\frac{1}{8005016753506549989469084281029751031104417898106301188902501} a^{16} - \frac{21742052392920060370221755237911823333762807269570076890675}{8005016753506549989469084281029751031104417898106301188902501} a^{15} + \frac{1318262744276119314600470957188333247003568665005465830337918}{8005016753506549989469084281029751031104417898106301188902501} a^{14} + \frac{978985556839464408917368141669338015554258870105656961439672}{8005016753506549989469084281029751031104417898106301188902501} a^{13} + \frac{2769652849413101156955094782253666473242821723068975047662913}{8005016753506549989469084281029751031104417898106301188902501} a^{12} - \frac{3865963828740415503858859292080994092134756470880241715944650}{8005016753506549989469084281029751031104417898106301188902501} a^{11} + \frac{1566778693849231577261720198965935208866780018514555776469291}{8005016753506549989469084281029751031104417898106301188902501} a^{10} + \frac{3292053559812149492078265514315409205047286548695243019801671}{8005016753506549989469084281029751031104417898106301188902501} a^{9} + \frac{2015958968976941668569215230872253848562337373638239291297888}{8005016753506549989469084281029751031104417898106301188902501} a^{8} - \frac{3768311406065772447653212035143009470927710873927962180210625}{8005016753506549989469084281029751031104417898106301188902501} a^{7} - \frac{651578051308172587753476565966120883630751279431155212135290}{8005016753506549989469084281029751031104417898106301188902501} a^{6} + \frac{1211160314524927167956762805442153429806021925493763606465554}{8005016753506549989469084281029751031104417898106301188902501} a^{5} + \frac{1576750091352007627088216157619973684725771671970502479230746}{8005016753506549989469084281029751031104417898106301188902501} a^{4} - \frac{916811404478504719979165509046006355992462069581910473626098}{8005016753506549989469084281029751031104417898106301188902501} a^{3} - \frac{3795236126167884475140566458620786336071637918943472071349866}{8005016753506549989469084281029751031104417898106301188902501} a^{2} - \frac{1000132303391176795188573093161245333680963265630325848143544}{8005016753506549989469084281029751031104417898106301188902501} a + \frac{2324389487913912762466131974077911977648826063869399720738164}{8005016753506549989469084281029751031104417898106301188902501}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $16$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 40860825172254010 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 17 |
The 17 conjugacy class representatives for $C_{17}$ |
Character table for $C_{17}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
613 | Data not computed |