Normalized defining polynomial
\( x^{17} - x^{16} - 432 x^{15} + 1911 x^{14} + 56071 x^{13} - 377127 x^{12} - 2275999 x^{11} + 22947072 x^{10} - 5751373 x^{9} - 395586237 x^{8} + 1094097337 x^{7} - 39485017 x^{6} - 2920148551 x^{5} + 2341974035 x^{4} + 1284864535 x^{3} - 1464500037 x^{2} - 140787928 x + 238840843 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(258850007664814362506653464185428842369437873281=919^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $615.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $919$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(919\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{919}(512,·)$, $\chi_{919}(1,·)$, $\chi_{919}(706,·)$, $\chi_{919}(206,·)$, $\chi_{919}(849,·)$, $\chi_{919}(338,·)$, $\chi_{919}(416,·)$, $\chi_{919}(535,·)$, $\chi_{919}(284,·)$, $\chi_{919}(607,·)$, $\chi_{919}(288,·)$, $\chi_{919}(162,·)$, $\chi_{919}(229,·)$, $\chi_{919}(234,·)$, $\chi_{919}(305,·)$, $\chi_{919}(58,·)$, $\chi_{919}(703,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{53} a^{15} - \frac{22}{53} a^{14} - \frac{23}{53} a^{13} + \frac{9}{53} a^{12} + \frac{20}{53} a^{11} + \frac{25}{53} a^{10} - \frac{15}{53} a^{9} - \frac{23}{53} a^{8} - \frac{19}{53} a^{7} + \frac{14}{53} a^{6} + \frac{23}{53} a^{5} - \frac{23}{53} a^{4} - \frac{19}{53} a^{3} - \frac{7}{53} a^{2} - \frac{8}{53} a$, $\frac{1}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{16} + \frac{417454015905576707931374622077248108323243949363974814588017539364895822}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{15} - \frac{9718194280290977804592393000882413045767897419046903375947063155603578380}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{14} - \frac{17258145176792693642790369466278531800611106484852013124275528666448771298}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{13} + \frac{588634623862484836495587874850655361067630441614704715639777892363760877}{1205878875739970169090451277767519256166586488483730215558724488996750211} a^{12} - \frac{31898291626316003379690781189884248967932414486487169729561196331951029682}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{11} - \frac{23641197807586306350952848556919492195624167057259564226221259065687466058}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{10} - \frac{12653627139058625506871255237636322531825531726238196696550382093698687276}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{9} + \frac{14189122928595243468731426717403635651715750404035922932896729622331775305}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{8} + \frac{1541820500219721729856484321977329338150583117656494543018252298179838810}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{7} + \frac{31327929920678712222644237181963602396996642389852960851880153813155357065}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{6} - \frac{23312512276374797261198662851052839779766164946152359326428728975146641132}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{5} - \frac{19834144198038018280109750381216612310530383537063987155804536304228987652}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{4} + \frac{9597765110741742682932269676042472790857813662458015740358355049700999331}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{3} - \frac{22272245719408462907950423060915185772433899232666979649705382698708828177}{63911580414218418961793917721678520576829083889637701424612397916827761183} a^{2} - \frac{4886110869208312975488931715982303298107574979617717249549020732080245795}{63911580414218418961793917721678520576829083889637701424612397916827761183} a - \frac{505170996438625176032099302029500797698080190401945237739039357599919025}{1205878875739970169090451277767519256166586488483730215558724488996750211}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 935275490448786200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 17 |
| The 17 conjugacy class representatives for $C_{17}$ |
| Character table for $C_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{17}$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 919 | Data not computed | ||||||