Normalized defining polynomial
\(x^{17} - 136 x^{15} - 85 x^{14} + 6154 x^{13} + 6545 x^{12} - 119680 x^{11} - 168555 x^{10} + 998835 x^{9} + 1749300 x^{8} - 2783546 x^{7} - 6581040 x^{6} - 678725 x^{5} + 3813882 x^{4} + 770593 x^{3} - 616267 x^{2} - 82620 x + 577\)
Invariants
Degree: | $17$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[17, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(2367911594760467245844106297320951247361\)\(\medspace = 17^{32}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $207.08$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $17$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $17$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(289=17^{2}\) | ||
Dirichlet character group: | $\lbrace$$\chi_{289}(256,·)$, $\chi_{289}(1,·)$, $\chi_{289}(69,·)$, $\chi_{289}(137,·)$, $\chi_{289}(205,·)$, $\chi_{289}(273,·)$, $\chi_{289}(18,·)$, $\chi_{289}(86,·)$, $\chi_{289}(154,·)$, $\chi_{289}(222,·)$, $\chi_{289}(35,·)$, $\chi_{289}(103,·)$, $\chi_{289}(171,·)$, $\chi_{289}(239,·)$, $\chi_{289}(52,·)$, $\chi_{289}(120,·)$, $\chi_{289}(188,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{131} a^{15} - \frac{18}{131} a^{14} + \frac{41}{131} a^{13} - \frac{11}{131} a^{12} + \frac{63}{131} a^{11} - \frac{46}{131} a^{10} + \frac{5}{131} a^{9} + \frac{33}{131} a^{8} - \frac{59}{131} a^{7} - \frac{64}{131} a^{6} - \frac{58}{131} a^{5} - \frac{21}{131} a^{4} - \frac{18}{131} a^{3} - \frac{47}{131} a^{2} + \frac{6}{131} a - \frac{54}{131}$, $\frac{1}{3944510245577144597573304311579244960447078599323} a^{16} - \frac{6174058074807975389663144027530413147904313786}{3944510245577144597573304311579244960447078599323} a^{15} - \frac{261522124122268955683359623478616415556821878084}{3944510245577144597573304311579244960447078599323} a^{14} - \frac{52976388106759767081722671050428240810850950117}{3944510245577144597573304311579244960447078599323} a^{13} - \frac{711713782268902153825598344991757002400564423614}{3944510245577144597573304311579244960447078599323} a^{12} - \frac{1212048790209943317515501798704916435380720019070}{3944510245577144597573304311579244960447078599323} a^{11} + \frac{345315770758007957297426072310132600566514628056}{3944510245577144597573304311579244960447078599323} a^{10} + \frac{436596642650347302239470754275084543915199424877}{3944510245577144597573304311579244960447078599323} a^{9} + \frac{1761965365504897130143282200300135802778129331328}{3944510245577144597573304311579244960447078599323} a^{8} - \frac{1720616893637595380571455992008401866720217677651}{3944510245577144597573304311579244960447078599323} a^{7} - \frac{1298618618900120233533833387313805841741365299492}{3944510245577144597573304311579244960447078599323} a^{6} - \frac{1129585891690935064018745119987947602182542299944}{3944510245577144597573304311579244960447078599323} a^{5} + \frac{505136008207589463224843019557726633812468141044}{3944510245577144597573304311579244960447078599323} a^{4} - \frac{1158174328533015240971064874702269170486415953767}{3944510245577144597573304311579244960447078599323} a^{3} + \frac{1215272207492939235485422888246272577657198676464}{3944510245577144597573304311579244960447078599323} a^{2} - \frac{133713698375855073379328585979803391705871929748}{3944510245577144597573304311579244960447078599323} a + \frac{682167394224991075241607018100575427678232941397}{3944510245577144597573304311579244960447078599323}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $16$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 111156254553000 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 17 |
The 17 conjugacy class representatives for $C_{17}$ |
Character table for $C_{17}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | R | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
17 | Data not computed |